
Chapter 1

General Introduction

1.1 Standfirst
The complexity of our world is striking, thrilling, even frightening sometimes. Looking at the Cam-

bridge dictionary definition, complex is defined as "having many parts connected in ways that are difficult
to understand". This definition is directly coming from the word’s etymology: the word complex comes
from the Latin root plectere: to weave, entwine, and from the prefix com "with, together". Hence the
complexity of a system, arises from the interactions between its parts, with the inherent computational
difficulties coming from the combinatorial nature of interactions. In its broadest sense, we call "complex
system" : 1) a set of entities 2) that through their interactions 3) forms a unified whole defined in terms
of its boundaries 4) that present emerging properties not present at the level of each component.

The first strategy proposed to study complex systems was the use the reductionist approach (for a
review see (Rosenberg, 2007)). Popularized by René Descartes, in De homine (1662), the author was one
of the first to develop a reductionist approach of life, considering schematically a complex system as the
sum of its parts in first approximation. However the reductionist method isn’t without flaws as (i) hidden
variables could act as confounding factors, (ii) several causal factors do not always act additively on a
system, and (iii) it does not account for relationships between the system and its environment. A more
systemic approach is therefore necessary. Although it is arguable that science studies complex systems
for hundreds of years, formal conceptualization underlying the complex system theory dates from the
1970’s. The complex system theory can be seen as an alternative paradigm to reductionism; it attempts
to explain systems in terms of their constituent parts and the individual interactions among them.

In that sense, living organisms are highly complex: interactions are ubiquitous within and between
the different scales of life (from molecules as DNA, cells, tissues, organisms to ecosystems). Even without
considering interactions, the number of species (parts of the biosphere system) is tremendous, with an
estimated 5 ± 3 million leaving species (Costello et al., 2013). Since Darwin published in 1859 On the
Origin of Species, the evolutionary biology community tries to understand the origin of this immense
diversity through the study of the mechanisms that govern the changes in the heritable characteristics
of biological populations over successive generations, i.e. the adaptive process. These mechanisms are
referred to as evolutionary forces and impact the allele frequencies of a population, defined here in its
largest sense as a collection of individuals. The evolutionary forces structuring these complex leaving
systems are:

• Selection: the differential survival and reproduction of individuals due to differences in phenotypes,

• Drift: the change in the frequency of an existing allele in a population due to random sampling of
organisms,

• Mutation: the alteration of the nucleotidic sequence of the genome of an organism during repro-
duction,

• Migration: the gene flow between individuals from different populations,

• Recombination: Recombination doesn’t properly speaking change the allelic frequencies, but their
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covariance, or in other words the haplotypes of an organism, thanks to crossover between homolo-
gous chromosomes happening during sexual reproduction.

• Mating system can be seen as an additional evolutionary forces: in sexual eukaryotes, the mating
system is related to sexual behaviour of individuals, the way gametes are formed and individuals
encounter upon fecundation when it exists.

Several fields of investigation (namely Mendelian genetics, population genetics, quantitative genetics
and the later evolutionary developmental biology, and genomics) have been integrated in the "Modern
Synthesis". However, their theoretical framework rely on different views of the adaptive process. For
example, population genetics works bottom-up from the dynamics at single loci, without much focus on
the phenotype, whereas quantitative genetics envisions phenotypic adaptation top-down, from the vantage
point of the trait (Höllinger et al., 2019). Therefore, they differently explore the parameter spaces of their
models. While, we are still far from a holistic and unified view of adaptation, experimental evolution
combined with -omic data can help bridging the gap between these two disciplines.

Fundamentals in quantitative and population genetics have been set long before the advent of molec-
ular genetics. Those disciplines can be seen as a field of applied mathematics that describe changes of
allelic frequencies and/or phenotypes in populations. In the early 1900’s, most of the objects manipulated
in population genetics were conceptual entities described by letters, using a mathematical formalism (e.g.
Box "Some definitions" in 1.2.1.1). I wrote this introduction in an educational perspective in the hope to
help other students to navigate among the diversity of models and underlying hypotheses. Personally, I
would have loved to be taught these concepts prior to the beginning of this intellectual adventure.

In this introduction we will keep in mind the reading axes: how does evolutionary forces and their
interactions govern the adaptive process ? What are the consequences on adaptation of two qualitatively
different sources of variation, namely standing genetic variation and de novo mutation ?

1.2 Evolutionary forces
1.2.1 Drift

Because populations are of finite size, genetic drift occurs whenever the collection of individuals is
randomly sampled, resulting in random change of allele frequencies. Consider a population composed
of N diploid individuals randomly mating to produce a new population at the next generation. Some
individuals may leave many offspring, while others may leave few because of non genetic factors that
can be modelled as a stochastic process. Furthermore, mendelian segregation adds another source of
stochasticity. Indeed, an heterozygote Aa can transmit either a a allele or a A allele to its progeny.
Altogether, at the next generation, the total number of A alleles will be the result of a binomial sampling
B(2N, p), where p is the frequency of the A allele at the parental generation, and 2N the number of
gametes that form the N diploid individuals. This random change in the number of A in the offspring
translates into a change in the probability of drawing the allele A or a at the next generation.

1.2.1.1 Wright-Fisher Model for haploid populations

For the sake of simplicity, let’s firstly consider a Wright-Fisher Model, whose assumptions are:

• A constant population size of N ∈ N haploid individuals every generation.

• Non-overlapping generations.

• No selection: Generation at time t+1 is formed by randomly choosing N individuals at generation
time t, uniformly and with replacement. t ∈ N

• One locus with two alleles A and a.

Intuitively, each parent gives birth to a large number of offspring but only N individuals randomly survive
to form the next generation. Figure 1.1 presents different simulation results for the evolution of the allelic
frequency p of the A allele in a Wright-Fisher population under genetic drift. We can extract from this
graph some intuitive remarks. An allele submitted to drift is submitted to frequency changes charac-
teristic of a brownian motion. An allele either become fixed or lost. The smaller the population size,

8



Some definitions
• Locus : The position of a sequence of interest on a chromosome, like a gene, an exon, a nucleotide.

• Gene : A sequence of nucleotides that encodes the synthesis of an RNA often translated into a protein.
A concept in constant redefinition.

• Allele : A variant form of a locus/gene.

• Genotype : The combination of alleles carried by an individual at a particular locus.

• Ploidy : The number of complete sets of chromosomes in a cell.
Haploid: The number of sets of chromosomes normally found in a gamete.
Diploid: Diploid cells have two complete sets of chromosomes.

• Allele frequency : The ratio of the number of copies of an allele in a population, over the total number
of alleles. Consider two alleles A and a at a given locus in a population of size N , with NA and Na

copies:
For a haploid population, the frequency of allele A is given by: fA = NA

NA+Na
= NA

N .
For a diploid population, the frequency of allele A is given by: fA = NA

NA+Na
= NA

2N .
In all cases allelic frequencies sum up to 1: fA + fa = 1.

• Genotype frequency : The ratio of the number of individuals of one genotype in a population, over
the population size. Consider two alleles A and a at a given locus in a population of size N :
For a haploid population, the genotype frequencies equal the allelic frequency, which greatly simplifies
the calculations.
For a diploid population, three different genotypes are possible for a diallelic locus (AA, Aa,aa), and
we have:
fAA = NAA

N ; fAa = NAa

N ; faa = Naa

N with fAA + fAa + faa = 1. We can compute directly the allelic
frequencies from the genotypic frequencies, e.g:

fA = 2NAA + NAa

2N
= fAA + 1

2fAa

• Hardy-Weinberg equilibrium : For a diploid species, the allelic frequencies can be computed from
the genotypic frequencies. However we need other hypotheses to estimate the genotypic frequencies
from the allelic frequencies. These are:

• Monoecious diploid population.
• Infinite population size.
• Panmixia (i.e. random mating: all individuals are potential partners, gametic equiprobability,

Mendelian allelic segregation during meiosis).
• No selection.
• No mutation.
• No migration.
• Discrete non-overlapping generations.

Genotypic frequencies can then be computed from allelic frequencies:

Genotype AA Aa aa
Frequency f2

A 2fAfa f2
a

Under these hypotheses, one generation is sufficient to reach the so called Hardy-Weinberg equilibrium,
where allele frequencies are constant trough time.
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the quicker the loss/fixation of the allele is. The smaller the population size, the higher the variance in
frequency change through generations. Let’s present a theoretical framework to formalize these intuitions.
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Figure 1.1: Allele frequency (of allele A) change over generations due to drift in a Wright-
Fisher Model. Each line corresponds to an independent simulation. Note the different x-axis ranges
for each different population size.

A Markov process Let Xt denotes the number of individuals of type A in the t’th generation, and
pt = Xt

N be the frequency of allele A. In a Whright-Fisher population, the next generation consists in a
random sampling with replacement of N parents. Each parent transmits a copy of its allele to its progeny.
Hence, Xt+1 is a drawing in a Binomial(N,pt) distribution :

Pr{Xt+1 = m|Xt = Npt} =
�

N

m

�
pm(1 − pt)N−m, m ∈ [[0, N ]] (1.1)

Note that Xt+1 does not depend on Xt−1, but solely on the value of Xt at the previous generation.
Recall that a Markov chain is a stochastic process noted (Xt, t ≥ 0) describing a sequence of possible

events in which the probability of each event depends only on the state of the previous event. In other
words, a discrete Markov chain is a sequence of random variables X1, X2, X3, ... satisfying the Markov
property:

Pr(Xn+1|X1 = x1 ∩ X2 = x2 ∩ ... ∩ Xn = xn) = Pr(Xn+1|Xn = xn) (1.2)

Hence, (Xt, t ≥ 0) is a discrete-time Markov chain. As Xt+1|Xt follows a binomial distribution, the
expected value and the variance of Xt+1 are:

E(Xt+1|Xt) = Npt = Xt implying E(pt+1|pt) = pt (1.3)

and: V(Xt+1|Xt) = Npt(1 − pt) implying V(pt+1|pt) = pt(1 − pt)
N

(1.4)
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Using the law of total expectation, we obtain:

E(Xt+1) = E(E(Xt+1|Xt)) = E(N Xt

N
) = E(Xt) (1.5)

By induction, we have E(Xt) = X0, and E(pt) = p0.

From these equations, we can see two key properties of genetic drift:

• The expected allele frequency is constant.

• The variance of the allele frequency is inversely proportional to the population size.

Loss of genetic diversity through time Even though allele frequencies do not change on expectation,
each particular trajectory is expected to be different, as shown in Figure 1.1. Moreover, as time passes,
allele frequencies tend to be closer to fixation or loss, which corresponds to a reduction of the genetic
diversity within populations. Genetic diversity can be measured by Nei’s index Ht = 2pt(1 − pt), the
probability that two randomly (with replacement) picked individuals contain both alleles in a population
a time t.

To see how Ht change over time, we can write

E(H1) = E(2p1(1 − p1)) = 2(E(p1) − E(p2
1)) = 2(E(p1) − V(p1) − E(p1)2) (1.6)

= 2(p0 − p0(1 − p0)
N

− p2
0) = (1 − 1

N
)2(p0 − p2

0) (1.7)

= (1 − 1
N

)H0 (1.8)

By induction on t, we have:

E(Ht) = H0(1 − 1
N

)t ≈ H0 e−t/N for large N (1.9)

Therefore, the smaller the population, the quicker the loss of genetic diversity will be.

If we set zi,t = Pr{Xt = i}, we can write the Markov chain as follows:

−−→zt+1 = T.−→zt (1.10)

where: T =




(0) (1) ... (N)
(0) 1 0 ... 0
(1) t1,0 ... ... t1,N

... ... ... ...
(N) 0 0 ... 1




with: ti,j = Pr{Xt+1 = j|Xt = i} (1.11)

We can easily see from the transition matrix T that p = 0 and p = 1 are absorbing states, these states
correspond to the fixation of allele A if p = 1 and a if p = 0.

Therefore, without any other evolutionary forces, whatever the initial conditions (N and p0), drift
leads to the inescapable loss of polymorphism in a population, through the fixation of alleles.
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Fixation probabilities Next, we can compute the probability that allele A get fixed. Let τ = min{t :
Xt = 0 or Xt = N} be the fixation time. The probability of fixation of A writes Pr{Xτ = N}, and the
probability of fixation of a writes Pr{Xτ = 0}. As we have seen that fixation always occurs and that the
average value of Xt remains constant over time, we have intuitively:
E(Xτ ) = 0 Pr{Xτ = 0} + N Pr{Xτ = N} = E(X1) = X0 therefore:

Pr{Xτ = N} = X0
N

= p0 (1.12)

To prove this, we note that since Xt = Xτ when t > τ , X0 = E(Xt) = E(Xτ ; τ ≤ t) + E(Xt; τ > t)
where E(X; A) is short for the expected value of X over the set A.Now, let t → ∞ and use the fact that
|Xt| ≤ N to conclude that the first term converges to E(Xτ ) and the second to 0.

An interesting consequence is the rate of fixation of new mutations: a mutation can occur in any of
the N individuals with probability µ (the mutation rate). Hence, it goes to fixation with probability 1/N .
So, at each generation, the probability that a mutation arises and ultimately gets fixed is N ·µ ·1/N = µ.

• In simpler terms, the fixation probability of an allele A corresponds to its initial frequency.

• In terms of genealogies, this implies that all alleles in a population descend from one unique
allele at generation 0, with a probability p0 to be of allele A.

• The rate of fixation of a neutral mutation in a population of size N , is the mutation rate µ,
and does not depend on N .

Average fixation time Let us now compute the average fixation time τ(p0) of an allele that is initially
at frequency p0. If p0 = 0 or p0 = 1, fixation is reached so that τ(0) = 0 and τ(1) = 0. Otherwise
(p0 �= {0, 1}), neglecting the probability of fixation within a single generation, the allele frequency at the
next generation is p1, and τ(p0) = 1 + τ(p1). By conditioning on the value p1 and using the Markov
property, we obtain:

τ(p0) = 1 +
�

k

Pr{p1 = k/N}τ(k/N) (1.13)

Therefore τ(p) is a solution of a certain linear equation. It can be solved when N is small, but
become computationally heavy when N becomes large, and an approximation is required. Suppose τ(p)
is continuous, we can expand the function in a Taylor series about p:

τ(p) ≈ 1 +
�

k

Pr{p1 = k}[τ(p) + τ �(p)(p1 − p) + 1
2τ ��(p)(p1 − p)2] (1.14)

τ(p) ≈ 1 + τ(p) + E(p1 − p)τ �(p) + 1
2τ ��(p)E((p1 − p)2) (1.15)

Because V(pt+1) = pt(1−pt)
N , and E(p1 − p) = 0, (1.15) gives,

τ ��(p) ≈ −2N

p(1 − p) (1.16)

Solving with the boundary conditions τ(0) = τ(1) = 0 gives:

τ(p) ≈ −2N(p log(p) + (1 − p) log(1 − p)) (1.17)

Thus, for the Wright-Fisher model, the expected time to fixation is of order O(2N). But be
careful, this formalism called "diffusion equation" is based on a continuous time approximation
that is correct if N is large and p ≈ (1 − p).
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Main equation for diploid:

• Heterozygosity loss:

E(Ht) = H0(1 − 1
2N

)t ≈ H0 e−t/2N for large N (1.18)

• Time to fixation:

τ(p) ≈ −4N(p log(p) + (1 − p) log(1 − p)) (1.19)

One can very often extend results for haploid population to diploid one, by considering a population
size of 2N. Note that this doesn’t hold when interactions among alleles or loci exist.

1.2.1.2 The Coalescent approach in haploid populations

Let us try to have a glimpse of the impact of genetic drift on the genealogies of a population. A famous
approach, synthesized under the term "coalescent" or "n-coalescent" was developed by J.F.C. Kingman
in his articles: On the genealogy of large populations (Kingman, 1982b) and The coalescent (Kingman,
1982a). Recall that the ultimate fate of an allele is to be lost or to get fixed because of drift. Suppose
that the initial situation is N different alleles. Then, after fixation, all individuals will carry the same
allele as one of its ancestors, that has been transmitted from parent to offspring. The coalescent model
looks backwards in time and describes the fact that two or more individuals (or alleles) merge/coalesce
in the genealogies into a single ancestor through random coalescent events (see figure 1.2).

Present

(a)
Past (b)

Figure 1.2: Two simulated coalescent process in a Wright-Fisher population for N = 5. Each
dot represents an individual. Each row of dots represents a generation. Present is at the top and past
at the bottom. A color represents a genotype. A line represents a kin relationship. The darker line
represents the ancestral path of the observed population. In sub-figure (a), the three first dark blue
dots share an ancestor at the previous generation. This is called multiple merging. The 2 others dots
coalesce 2 generations back in a simple merging process. All five dark blue dots share the same ancestor
(or coalesce) 4 generations back. Sub-figure (b) represents a more complicated multiple merging process.
The 2 first orange dots coalesce a generation back, in a simple coalescence event, and the three last orange
dots also merge a generation back. We have here 2 coalescence events at the same generation, with two
and three individuals sharing two different ancestors. The five orange dots coalesce two generations back.

Looking backwards in time, the five individuals of figure 1.2a) coalesce in one generation in three
individuals, which coalesce in one generation into two individuals. Hence, all five individuals share
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a common ancestor four generations back. Hence a coalescent can be seen as a succession of times
(tk, tk−1, ..., t2) between coalescence events from the actual population to the common ancestor. In
figure 1.2a), we have (t5 = 1, t4 = 0, t3 = 1, t2 = 2), while in figure 1.2b), we have (t5 = 1, t4 = 0, t3 =
0, t2 = 1). Note that the individuals that did not leave any progeny at the considered generation are
discarded because they don’t bring any information.

Two individuals First consider two random individuals from a haploid population of size N. The
probability that they share the same parent at time t − 1 is 1

N :
Indeed, for the first considered offspring, N parents are possible and N parents are possible for the

second, giving N2 total possibilities but only N possibilities for identical parents: it follows the sought
probability: N

N2 = 1
N .

We can write the probability that two individuals do not share the same parent at generation t − 1
as: 1 − 1

N . Thus the probability that the common ancestor of these two individuals lived two generations
back is (1 − 1

N ) 1
N . By induction, the probability that these two individuals coalesce n generations back

is (1 − 1
N )n−1 1

N .
Hence, the time t2 before the coalesence of two lineages is a random variable that follow a geometric

distribution of parameter N −1, with E(t2) = N and V(t2) = N(N − 1).

k individuals Kingman shows that in a sample of k individuals the probability of coalescing at the
previous generation is:

k(k − 1)
2

1
N

(1.20)

Indeed the number of ways to pick two individuals in a sample of k, is:
�

k
2
�

= k(k−1)
2 and 1

N the
probability that they come from the same parent. However, we are neglecting here the fact that more
than two individuals can come from the same parent, a process called multiple-merging. For example:
in figure 1.2b three individuals come from the same parent a generation back. In figure 1.2a a pair and
a triplet of individuals coalesce a generation back. However, as Kingman noted these events occur with
probability of order O( 1

N2 ) and can be neglected when N is large.
Therefore, the probability that the k lineages do not coalesce during n generations when N is large

is:

≈ (1 − k(k − 1)
2

1
N

)n ≈ e− k(k−1)
2

n
N (1.21)

If we express time in terms of N (the population size) generations, and set t = n
N with n the generation,

we can see that, the time tk during which there are k lineages, converges to an exponential distribution
of rate k(k−1)

2 and mean 2
k(k−1) , i.e. the expected value of tk is E(tk) = 2N

k(k−1) , and its variance is
V(tk) = 4N2

k2(k−1)2 .

Most recent Common Ancestor Looking backward in time, there will be k lineages during tk, then
k −1 lineages during tk−1, and so on until the last two lineages coalesce into a particular individual called
the Most Recent Common Ancestor (MRCA) of the sample Fig. 1.3.

The time TMRCA to the MRCA can be computed as TMRCA =
�k

i=2 ti.
We then have:

E(TMRCA) = E(
k�

i=2
ti) =

k�

i=2
E(ti) =

k�

i=2

2N

i(i − 1) = 2N

k�

i=2

1
i

− 1
i − 1 = 2N(1 − 1

k
) (1.22)

Thus the average time to the most recent common ancestor of a haploid population is in order of
2N generations in a Wright-Fisher model, and 4N for a diploid population.

Note that the ti are random variables and that the whole process is highly stochastic. Tavaré (1984)
computed the whole distribution of the Kingman coalescent TMRCA, giving:
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Figure 1.3: Example of a Kingman coalescent tree of a sample of 9 individuals. Extracted
from Wakeley (2009). The time interval tk during which there is k individuals is represented on the
right-hand side of the tree.

fT MRCA(t) =
n�

i=2

(2i − 1)(−1)i(n(n − 1)...(n − i + 1))
n(n + 1)...(n + i − 1)

�
i

2

�
e−(i

2)t (1.23)

The distribution of TMRCA is provided in Figure 1.4. It shows that the distribution is skewed towards
smaller TMRCA values. While the approximated expected value is quite robust to variations in population
size, the realized value is most of the time smaller. Note also the broadness of the distribution that
illustrates the stochasticity of random genetic drift.
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Figure 1.4: TMRCA distribution in N generation, for N and k in {5, 10, 50, 100}. Each distribution
has been produced by simulating the random coalescence of k = N haploid individuals. Each black
vertical line corresponds to the expected value: E(TMRCA) = 2N(1 − 1

k ) and the colored vertical lines
correspond to the simulated mean. The expected value, neglecting multiple merging is quite robust to
the population size.

1.2.2 Mutation
In the previous paragraph, we have seen that genetic drift alone leads to the inescapable loss of genetic

diversity due to allele fixation or loss. However, it is particularly obvious from phenotypic or molecular
observations that a certain amount of diversity is observable. Mutations are modifications of the genetic
information that occur during DNA replication and result in the occurrence of a new allele. Evolutionary
relevant mutations are the ones transmitted to offspring, and therefore population genetics focuses more
on mutations in germinal cells. (N.B. Population genetics models are now used to study the fate of other
types of mutations, like somatic mutations occurring in different types of cancer, considering cancerous
tissues as population of daughter cells).

We can distinguish several types of causes for mutations: spontaneous mutations (molecular decay,
like depurination or deamination), mutations during repair of DNA damage (like error-prone translesion
synthesis involved in the repair of apurinic site, or through non-homologous end joining repair process),
induced mutations caused by mutagens (like DNA intercalating agents, oxidative chemicals, UV, ionizing
radiations...), transposable elements movements, etc...

These different causes for mutation occurence lead to several classes of DNA modifications:

• Substitutions of one nucleotide by another. The change of a purine (A or G) resp. pyrimidine
(C or T) to another purine resp. pyrimidine is called transition. The change from a purine to a
pyrimidine (and vice versa) is called transversion. Transitions and transversions occur at different
rates, with the former being more frequent than the later.

• Insertions of one to many nucleotides (several kb). Insertions are often caused by transposable
elements, or errors during replication of repeating elements. Insertions in the coding region of a
gene may alter splicing of the mRNA (splice site mutation), or cause a shift in the reading frame.
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Insertions often significantly alter the gene product.

• Deletions of one to many nucleotides. Deletions often cause a shift in the reading frame, altering
the gene product. Large deletions of DNA can lead to the loss of one to several genes.

• DNA duplication, like gene duplication.

• Chromosomal translocations: the interchange of large piece of DNA between non-homologous chro-
mosomes.

• Chromosomal inversions: reversing the orientation of a chromosomal segment.

• Etc.

In any case, the appearance of a new allele results from a single event occurring by chance. The
initial frequency of the mutation is p0 = 1/N in haploids, and p0 = 1/2N in diploids. The fate of a new
mutation is determined by the other evolutionary forces.

1.2.2.1 Independence of mutation occurrence from selection

The demonstration that genetic mutations arise randomly in population, independently of other evo-
lutionary forces was brought by the famous Luria–Delbrück experiment (Luria and Delbrück, 1943), also
called the Fluctuation Test. In this experiment, a small number of cells from a E. Coli strain sensitive to
a phage were used to inoculate a culture in a non selective liquid medium, in the absence of the phage.
After the stationary phase was reached, samples were plated on a rich selective medium in presence of
the phage. After some time, the number of colony forming units was counted on each plate. Because the
medium was selective, only resistant cells could form a colony (Fig. 1.5)

Inocula�on
of sensi�ve

bacteria
in a non selec�ve

medium

overnight culture

Pla�ng
in a selec�ve medium
containing the phage

Coun�ng the number of
resistant colonies
in each Petri dish

Figure 1.5: The Luria-Delbrück experiment

Let Xi be the number of resistant colonies on plate i. There were two hypotheses (Fig. 1.6):

Were mutations induced by selection? In this case, mutations could only appear in the plated cells, and
each cell would have the same tiny probability µ of getting a mutation. Hence, Xi would result
from the drawing in a binomial distribution. Furthermore, because µ is expected to be very small
compared to the number of cells plated, Xi can be approximated as following a Poisson distribution
with its variance being equal to its mean.

Were mutations spontaneous, and independent of the selective agent? In that case, they could appear
at any time from the beginning of the experiment. In particular, a mutation appearing in the
pre-culture and having the same growth rate as the wild-type cells may reach a significant census
size at the end of the overnight culture. Plating here consists on sampling randomly n cells, among
which a fraction p0 can carry the resistance gene. Because of drift, the authors expected a variance
between plates much larger than the mean.

This experiment clearly demonstrated the independence of mutation occurrence from the selective
agent, as the experimental results experiment clearly fitted the hypothesis that mutations occur at ran-
dom, prior to the plating with the selective agent. In this experiment, their fate was determined by
genetic drift and selection.
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Figure 1.6: Distribution of the number of resistant colonies in the Luria-Delbrück experiment.
The figures from the paper are in black. The gray distribution corresponds to a Poisson distribution with
mean equal to the observed mean.

1.2.2.2 Population genetic model for neutral mutations

Any mutation can be modeled using a di-allelic model, in which one allele is mutated and the others
not. From this vantage point, the fate of an allele can be described without reference to its specific
molecular basis. Nevertheless, when several mutations occur at the same locus or different types of
mutations are considered, adjustments of the parameters (e.g. mutation rate) should be considered, as
discussed below.

The simple di-allelic model supposes A the randomly mutated version of allele a. Consider a proba-
bility of mutation, or mutation rate, µ. What is the expected allele frequency of A at time t + 1, pt+1,
knowing pt ?

E(pt+1|pt) = pt + µ(1 − pt) (1.24)

Therefore, the expected change of allelic frequency of A, at each generation is E(pt+1 − pt) = µ(1 − pt) if
no other forces are involved. Tacking into account genetic drift and the recurrent appearance of A alleles
by mutation, all individuals in the population will eventually be of type A.

If mutation can occur in both directions, so that µA→a corresponds to the probability that A mutates
into a, and µa→A, the opposite:

E(pt+1|pt) = (1 − µA→a)pt + µa→A(1 − pt) (1.25)

In the absence of other forces, an equilibrium will be reached when E(pt+1|pt) = pt = p∗ and it follows:

p∗ = µa→A

µA→a + µa→A
(1.26)

A broad application of this simple population genetics model is the inference of phylogenetic trees
from molecular data, taking into account different mutation rates for each possible DNA base substitution
(Kimura, 1980). Building on the transition matrix, Felsenstein (1981) proposed a maximum likelihood
method to infer evolutionary trees from DNA sequence data that takes into account the possibility of
different rates of evolution in different lineages.
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1.2.2.3 Mutation rate estimations

The straightforward method to estimate mutation rate is to perform mutation accumulation (MA)
experiments. In this type of experiment, a single inbred and highly homozygous line is typically replicated
and maintained for many generations at small population size (through brother and sister mating, selfing,
etc.), in an environment designed to minimize the effects of natural selection. As mutations are accumu-
lating, variance between lines increases. The phenotypic changes across generations is used to indirectly
estimate the mutation rate for that organism. If one wish to estimate the mutation rate affecting a simple
phenotype due to monogenic resistance, one could confront the derived lines to the selective agent, as
in the Fluctuation Test, to estimate the proportion of resistant individuals. Knowing the breadth of the
mutational target, one can further estimate the mutation rate per base pair (by dividing the mutation
rate by the number of bases of the mutational target). The actual advances in sequencing techniques
combined with mutation accumulation experiments improve genome-wide estimates of mutation rate: as
we have seen in the drift section, neutral mutations become fixed at the mutation rate µ; and therefore,
by looking at the number of fixed synonymous (neutral) mutations, one can directly estimate the neutral
mutation rate (Wielgoss et al., 2011). For example, the famous Lenski’s E. coli long term-evolution
experiment that started in 1988 and reached over 60 000 generations in 2016 with 12 populations grown
on different media (Good et al., 2017), allowed Wielgoss et al. (2011) to produce a reliable estimate of
8.9 × 10−11 point mutation per base-pair per generation. However some uncertainties still remain and
variance in the mutation rate within species can be found in the literature, among different bacterial
strains for example. Note that the mutation rate varies greatly along the genome, influenced by fac-
tors such as the recombination rate, and the presence of repeats (short sequence repeat, transposable
elements) (Drake et al., 1998).

Mutation rate can also be inferred from phylogenetic data thanks to the common hypothesis of
constant accumulation of neutral mutation (clock-like) in a genome: the molecular clock hypothesis.
The phylogenetic method uses a known phylogenetic tree of closely related taxa and their approximate
TMRCA. If we count neutral mutations between two taxa and assume that these mutations have been
accumulating at a constant rate since the TMRCA, we can estimate the mutation rate. Indeed, as we
have seen previously, the rate of fixation of neutral mutation under genetic drift is equal to the mutation
rate. For further discussion see for example Scally and Durbin (2012).

Table 1.1, compile mutation rates estimates, for several model organism and through different proto-
cols.
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Species Tissue
Cell divisions

per
generation

Mutation rate
per

generation

Mutation rate
per cell
division

Source

Escherichia
coli 1 0.26 ×10−9 0.26 ×10−9 Lynch (2010)

1 0.089 ×10−9 0.089 ×10−9 Wielgoss
et al. (2011)

1 0.50 ×10−9 0.50 ×10−9
Lee and
Palsson
(2010)

1 0.15 ×10−9 0.15 ×10−9 Kishimoto
et al. (2010)

Saccharomyces
cerevisiae 1 0.33 ×10−9 0.33 ×10−9 Lynch (2010)

Caenorhabditis
elegans Germline 9 5.60 ×10−9 0.62 ×10−9 Lynch (2010)

Drosophila
melanogaster Germline 36 4.65 ×10−9 0.13 ×10−9 Lynch (2010)

Mus musculus Germline 39 38.00 ×10−9 0.97 ×10−9 Lynch (2010)
Homo sapiens Germline 216 12.85 ×10−9 0.06 ×10−9 Lynch (2010)

Arabidopsis
thaliana Germline 40 6.50 ×10−9 0.16 ×10−9 Lynch (2010)

Zea mays ssp.
mays 29 - 33 ×10−9 Clark et al.

(2005)

Table 1.1: Diversity of mutation rate (substitution) across living organisms. Note that in
eukaryotes, mutations that are transmitted are the ones occurring in the germinal cells. Because cellular
divisions occur in the germline, the mutation rate per generation is higher than the mutation rate per
cell.

1.2.2.4 Mutation rate evolution

From table 1.1, the mutation rate seems to stay "low" throughout the tree of life, i.e. a 10−9 mutation
probability seems consistent with the first role of the DNA, that is to convey reliably the genetic informa-
tion. However, such small probabilities are difficult to apprehend, for example, what is the evolutionary
impact of a change in mutation rate? and how can we explain differences between organisms? E.g.
Prokaryotes also seem to have a lower mutation rates per generations than eukaryotes.

To answer those questions, we can correlate these differences with other parameters, such as the
genome size. Drake (1991) concluded that the mutation rate per base pair per generation scales inversely
with the genome size (G) in DNA-based microbes, which have been confirmed for double-stranded DNA
viruses and other prokaryotes (Lynch, 2010). However in contrast to prokaryotes, eukaryotic mutation
rates scale positively with genome size, with vertebrates rates being nearly 100 times higher than that of
prokaryotes, rates for unicellular eukaryotes, invertebrates, and land plants being intermediate.

The evolution of mutation rate results from several interacting forces. High mutation rates increase
the number of deleterious mutations and tend to be selected against. But a high mutation rate also
produces more advantageous mutations. Low mutation rates may also result in metabolic cost and slow
replication rate due to the involvement of more accurate repair systems. The idea of a trade-off was
explored (Kimura, 1967), however the expected mutation rate should be lower than what is observed.
One possible explanation is that the power of genetic drift (in order of 1/Ne, the effective population size,
a concept which will be explained later on) ultimately constrains what natural selection can accomplish
with any trait. Once the incremental effect of reduced mutation rate is smaller than the power of drift,
the mutation rate reaches a lower bound. A better understanding of the evolution of the mutation rate
would require a fine comprehension of the interplay between drift and selection (Lynch, 2010; Lynch
et al., 2016).
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1.2.2.5 Mutational effect on fitness and its distribution

Point mutations are often characterized as non-coding (if they occur in non coding region like introns)
or coding (e.g. in exons). Coding mutations are then decomposed in non-synonymous or synonymous,
if the change of nucleotide change (resp. do not change) the coded amino-acids. Note that these DNA
modifications can lead to several effects on function, like loss-of-function (e.g. the insertion of a STOP
codon), gain-of-function, function modification, changes in levels of expression or dominance.

Figure 1.7: Hypothetical DFEs. The distribution of fitness effects comprise a continuum of effects
from lethal, strongly or mildly deleterious, to beneficial. Three distributions are pictured here that
comprise different amounts of deleterious and beneficial mutations: the dashed distribution where most
mutations are detrimental with two modes, one for lethal and the other for deleterious mutations; the
dotted distribution, also bimodal, which allows for substantial proportion of beneficial mutations; the
continuous distribution (solid gray) is predicted by a Fisherian fitness landscape (Figure from Bataillon
and Bailey (2014)).

We can distinguish three classes of mutations according to their effect on fitness: (i) mutations that
confer a reproductive disadvantage to the bearer and are selected against, called lethal or deleterious
mutations depending on their strength; (ii) mutations that have no fitness effects and evolve under drift,
called neutral mutations; and (iii) mutations that confer a reproductive advantage to the bearer and
are selected for, called advantageous mutations. However, these three categories conceal a continuous
mutational fitness effect distribution. The distribution of these fitness effect (DFE), is of particular
importance to geneticists Bataillon and Bailey (2014), as it caries information needed to understand the
nature of quantitative genetic variation, and the dynamics of de novo mutations in adaptation, and to
predict the consequences of maintaining animals or plants at low population, etc... Figure 1.7 illustrates
three hypothetical distributions of fitness effects. There are two main difficulties in inferring the DFE.
First, we expect that, within a well-adapted population, most mutations with detectable fitness effects
will be deleterious. Second, if beneficial mutations are rare, they consist in extreme events drawn in the
right-tail of the distribution. The Extreme Value Theory (EVT) tells us that draws from tails of virtually
any distribution converge to the same distribution called the generalized Pareto distribution (Bataillon
and Bailey, 2014; Beisel et al., 2007), so that different distributions can hardly be compared.

Despite those difficulties, two approaches, mutation accumulation and mutagenesis experiments on
one hand, and the analysis of DNA sequence data, on the other hand, have been used to decipher the DFE,
as reviewed in Eyre-Walker and Keightley (2007). The main idea in the analysis of polymorphism and
divergence data remains rather close to one of the first attempts developed by (McDonald and Kreitman,
1991) to measure the amount of selection experienced by genes, the McDonald-Kreitman test. This
test computes the ratio dn/ds of non-synonymous variation (supposed to experience selection) over the
synonymous variation (supposed to evolve neutrally). It then compares the amount of variation between

21



species (dn/ds) to the amount of variation within the sampled species (πn/πs). Some authors, like Smith
and Eyre-Walker (2002), then built on this test to infer α the proportion of advantageous substitutions,
and the proportion of strongly deleterious substitutions experiencing purifying selection. Then using the
theory of Poisson random field, Huerta-Sanchez et al. (2008) (see Sethupathy and Hannenhalli (2008) for
a theoretical tutorial), proposes an estimate of the DFE. The Site Frequency spectrum (SFS, a concept
developed later) is used to better integrate patterns of nucleotide variation within the focal species,
while variation between the focal species and the outgroup is measured by counting the number of fixed
mutations between them. (The SFS can be linked to the DFE and demographical parameters like the
effective population size; selection is assumed to be weak (s << 1) and the DFE to be constant in time
and the same in both the ingroup and outgroup). Selection and demography are again disentangled
by separating the sites into neutrally evolving and selected sites classes. The DFE is then inferred by
contrasting the SFS counts for the neutral and selected sites, by assuming homogeneity in demography
and other forces, between the two classes. One can note the method developed by Tataru et al. (2017)
that uses a hierarchical probabilistic framework that extends previous methods to infer DFE and α from
polymorphism data alone, without taking into account any information from an outgroup. They used a
mixture between gamma and exponential distributions, which model deleterious and beneficial mutations,
respectively, according to probability parameters.

We need to keep in mind the difficulties of estimating the DFE. First the effect of mutations are
difficult to disentangle from demography, as neutral mutations depend on their ability to overcome drift.
The concept of effectively neutral mutations has emerged in that sense. Secondly, the advantageous or
deleterious qualification of a mutation depends on the adaptive state of the population. In conditioning
the effect of mutations on a fitness function of a population, we can distort the absolute DFE of mutations,
as a strongly advantageous mutation might overshoot the optimal value, hence become deleterious if the
individual is already well adapted (see Fisher Geometric model hereinafter). Finally, the proportion of
mutations that are advantageous, effectively neutral and deleterious may vary between species, and differ
between coding and non-coding regions.

However, as reported by Eyre-Walker and Keightley (2007), we can draw the following conclusions:

• Advantageous mutations are rare, and those that are strongly selected are exponentially
distributed, as suggested by Orr and Gillespie from the Extreme Value Theory (for example
see: Joyce et al. (2008)). This property remains nevertheless difficult to test because of a
lack of power emanating from the rarity of this mutational class.

• The DFE of deleterious mutations is complex and multi-modal.

• It is unlikely that mutations are truly neutral, they however have vanishingly small effects.
But effectively neutral mutations are easier to identify through the joint estimation of de-
mographical parameters.

1.2.3 Recombination
We focused previously on one locus mainly, and didn’t account for the chromosomal arrangement of

loci that are not transmitted independently, so that linked loci segregate together during meiosis. In
order to take into account this non independent transmission, we can first define, the recombination rate
c between two loci as the proportion of recombinant gametes after meiosis. c varies between 0 (same
locus) and 1/2 (independent loci). By shuffling the combination of paternal and maternal alleles along
the chromosome, recombination results in new gametic combinations in a population. As shown below, it
also changes gamete frequencies. For those two reasons, we can consider recombination as an additional
evolutionary force.

1.2.3.1 Linkage Disequilibrium

Definition and measurement Let’s first consider a simple case, a diploid population constituted of
N individuals with two loci: A and B, with respectively two alleles A,a and B,b. The four combinations
are called haplotypes (AB, Ab, aB, ab). Let’s count the number of individuals presenting each haplotype:
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nAB ,nAb,naB and nab, and their respective frequencies:fAB ,fAb,faB and fab. We can retrieve each allelic
frequency by summing the corresponding haplotype frequencies, such as fA = fAB + fAb.

If alleles at each locus were independent, the probability of any haplotype would be the product
of its corresponding allele frequencies: fAB = fA × fB . However, if the two alleles A and B are not
independently inherited, one can measure the departure from this equilibrium, by introducing D, the
linkage disequilibrium coefficient (Bennett, 1952), such as:

DAB = fAB − fA × fB (1.27)
DAb = fAb − fA × fb (1.28)
DaB = faB − fa × fB (1.29)
Dab = fab − fa × fb (1.30)

Note that when DAB = 0, the loci are said to be in linkage equilibrium. Using the sum property of
haplotype frequencies, one can easily show that:

DAb = DaB and DAB = Dab and DAB = −DAb (1.31)

Therefore, one can consider only one value, that we call D, without any subscript and whose sign is
dependent on which allele is first considered like D = DAB = Dab. How can we interpret the value of D
? We can see that the value of D is constrained by the allele frequencies:

fAB = fA × fB + D (1.32)
fAb = fA × fb − D (1.33)
faB = fa × fB − D (1.34)

fab = fa × fb + D (1.35)

As the haplotype frequencies cannot be negative, we have:

D > 0 ⇒ D ≤ min(fA × fb, fa × fB) (1.36)
D < 0 ⇒ −D ≤ min(fA × fB , fa × fb) (1.37)

Therefore, following Franklin and Lewontin (1970), D can be normalized by its maximum value, and
we obtain:

D� = D
min(fA×fb,fa×fB) if D > 0

D� = −D
min(fA×fB ,fa×fb) if D < 0

�
⇒ 0 ≤ D� ≤ 1 (1.38)

If D� = 1, |D| is maximal, and therefore, at least one haplotype is missing.

One other traditional way to measure linkage disequilibrium consists on using a correlation coefficient
whose significance can be easily tested using a χ2 test (Hill, 1975) . E.g., let’s consider a couple of random
variables (Xi, Xj) so that Xi = 1 if an haplotype is composed of an allele A and Xi = 0 if it includes an
a and Xj = 1 if the haplotype presents an allele B and Xj = O if it presents a b.

E(Xi) = 1 × Pr(Xi = 1) + 0 × Pr(Xi = 0) = fA (1.39)
E(Xj) = 1 × Pr(Xj = 1) + 0 × Pr(Xj = 0) = fB (1.40)

E(XiXj) = 1 × 1 × fAB + 1 × 0 × fAb + 0 × 1 × faB + 0 × 0 × fab = fAB (1.41)

V(Xi) = E(X2
i ) − E(Xi)2 (1.42)

= 1 × Pr(Xi = 1) + 0 × Pr(Xi = 0) − f2
A (1.43)

= fA − f2
A = fA(1 − fA) = fAfa (1.44)

V(Xj) = fBfb (1.45)
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Then:

r2(Xi, Xj) = (E(XiXj) − E(Xi)E(Xj))2

V(Xi)V(Xj) = (fAB − fAfB)2

fAfafBfb
(1.46)

r2(Xi, Xj) = D2

fAfafBfb
(1.47)

• Because D depends on the allele frequencies, we expect values of D to vary a lot over many
pairs of markers, even when sites are in complete LD.

• D� has the interesting property to always be equal to 1.0 if two SNPs are in complete LD.
Furthermore, we only need three gametic types without the need to know the recombination
rate to explain patterns of variation. However, because of the normalization by the product
of marginal allele frequencies, the sampling properties of D� are difficult to study (Gaut and
Long, 2003).

• We will note that these measures of LD are derived only for 2 loci, with an increasing com-
plexity with more markers and more alleles per site. One way traditional way to overcome
this limitation is through the summary of pairwise measures of LD in matrix form, or to
plot values of r2 against a physical map. New interesting definitions have been proposed,
such as the paradoxical definition of linkage disequilibrium at one locus, that allows to see
LD as the probabilistic independence of certain events (Gorelick and Laubichler, 2004).

Linkage Disequilibrium evolution : recombination If we are interested in the evolution of LD
through generations, we can for example consider a diploid, panmictic, population of infinite size without
selection or mutation, and compute the frequency of fAB , after one generation of panmixia.

First we need:

fABfab − fAbfaB = [fA × fB + D][fa × fb + D] − [fA × fb − D][fa × fB − D] (1.48)
= [fAfB + fa + fb + fAfb + fafB ]D (1.49)
= D (1.50)

Let’s compute the frequency of fAB , after one generation of panmixia. After meiosis, AB gametes
can be produced without recombination by any genotype carrying a AB chromosome: (AB/AB, AB/Ab,
AB/ab, AB/ab). But AB gametes can also be created by recombination from the following genotype :
(Ab/aB, aB/Ab, AB/AB, AB/Ab, AB/aB). If we count all possible crosses between haplotypes that
lead to AB, we get:

fAB(t + 1) = fAB(t)2 + fAB(t)fAb(t) + fAB(t)faB(t) + fAB(t)fab(t) + c × fAb(t)faB(t) − c × fAB(t)fab(t)
(1.51)

= fAB(t) − c[fAB(t)fab(t) − fAb(t)faB(t)] (1.52)

Recalling that fAB(t) = fAfB + D(t), and that in the absence of selection, drift, mutation, we have
fA(t + 1) = fA(t), we finally obtain:

fAfB + D(t + 1) = fAfB + D(t) − cD(t) (1.53)

Which leads to:

D(t + 1) = (1 − c)D(t) (1.54)

By induction on t, we have:

D(t) = (1 − c)tD(0) (1.55)

Therefore, linkage disequilibrium between two loci decreases on average at a rate (1−c) per generation.
However, if one generation of panmixia is enough to create Hardy-Weinberg equilibrium, a much longer
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time is required to reach linkage equilibrium. The decrease in LD after 1/c generations tends towards 37%
as c tends towards zero. This means that, whatever the evolutionary force creating linkage disequilibrium
between two loci, two closely linked loci may stay in strong LD for a period of time inversely proportional
to their recombination rate.

In panmictic population, the amount of linkage disequilibrium between pairs of loci is expected to
be inversely proportional to their recombination rate. Because of recombination and Mendelian
segregation, independent loci are expected to be in linkage equilibrium.

This consideration had important consequences in population and quantitative genetics. It is at the
basis of genetic maps construction and of Genome Wide Association Studies (GWAS).

Linkage disequilibrium : drift and mutation Both drift and mutation are evolutionary forces that
create linkage disequilibrium in populations.

As seen before, a mutation occurs during reproduction and results in the modification of a DNA
sequence in the progenies of a single individual. Let’s consider a polymorphic locus with two alleles
A (in frequency p(t)) and a in a diploid population of size N . Suppose that a mutation occurs at a
neighboring locus that changes the monomorphic allele b into a new allele B in an A individual. At the
next generation, there will be three haplotypes having the following frequencies:

haplotype AB Ab aB ab
frequency 1/N · p(t) (1 − 1/N)p(t) 1 − p(t) 0

and the linkage disequilibrium will be D(t + 1) = p(t)/N , with r2 close to one: the fate of the A allele
will be linked to the fate of the new B allele. If B is a favourable mutation, haplotype AB will increase
in frequency and make the frequency of allele A also increase in the population.

Random genetic drift is also a powerful mechanism that may create linkage disequilibrium. In-
deed, in finite populations, the frequency of haplotype AB in the next generation is the result of a
Binomial(N, fAB(t)) sampling. Haplotype frequencies are going to fluctuate as in a brownian motion.
For neutral loci, Hill and Robertson (1968) linked r2 to the recombination rate through the widely used
parameter 4Nec in diploids population, so that:

E(r2) = 1
1 + 4Nec

(1.56)

where c is the recombination rate in morgans between the two markers and Ne is the effective population
size. This equation emphasizes that LD is a population properties and should be interpreted as such.

In particular, the fate of a new mutation that appears in a given haplotype context will determine
the fate of the alleles at all neighbouring loci. Both beneficial and detrimental mutations will tend to
decrease the genetic polymorphism at surrounding loci by accelerating their fixation or loss. However,
the two dynamics are different. The fixation of rare beneficial mutations will lead to a local decay of
polymorphism called selective sweep (Maynard Smith and Haigh, 1974). Because slightly detrimental
mutation may occur at a higher frequency at the genome scale, the loss of detrimental mutations will
lead to a general decay of neutral polymorphism concentrated in regions with low recombination. This
phenomenon is called background selection (Charlesworth et al., 1993). Selective sweeps will be seen more
in detail in the next chapter.

1.2.3.2 Recombination and crossing-overs

Genetic recombination is the genetic reshuffling of combination of several locus that leads to production
of offspring with combinations that differ from those found in either parent. In eukaryotes, genetic
recombination occurs during meiosis, through a process called chromosomal crossover, or crossing over.
It corresponds to the exchange of genetic material between two homologous chromosomes non-sister
chromatids that results in recombinant chromosomes during sexual reproduction, occasionally producing
new chimeric alleles.
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Crossing-overs During the pachytene stage of prophase I, this process involves the formation of a
synaptonemal complex, which is a protein structure that forms between homologous chromosomes (two
pairs of sister chromatids) to mediate chromosome pairing. Crossover usually occurs when matching re-
gions on matching chromosomes break and then reconnect to the other chromosome, thanks to a structure
called "Holliday junction". The resolution of this double-strand break initiate the recombinational repair
process. The repair of the gap can lead to two different mechanisms: crossover repair or non-crossover
repair of the flanking regions. Crossover repair occurs by the Double Holliday Junction (DHJ) model
while non-crossover repair occurs primarily by the Synthesis Dependent Strand Annealing (SDSA) model,
leading to gene conversion. See figure 1.8.

Figure 1.8: Schematic view of the DNA repair process leading to crossover or non-crossover mechanisms.
Crossing over leads to recombination and non-crossing over to gene conversion. From Bernstein et al.
(2011).

Because recombination can occur with small probability at any location along chromosome, the fre-
quency of recombination between two locations depends on the distance between them. Recombination
points can be simulated by considering linear chromosomes and drawing successive recombination points
in an exponential law of parameter λ, so that 1/λ is the average number of recombination event per
chromosome Falque et al. (2007). Note that this model supposes no interference.

Recombination pattern along chromosomes and the crossing-over interference Among other
molecular particularities of recombination Zickler and Kleckner (2015) reviewed the distribution pattern of
crossing over along chromosomes. They discuss the fact that both double-stranded breaks and consequent
crossovers tend to be evenly spaced along the chromosomes by mechanisms that remain to be discovered.
Those mechanisms seem to prevent two crossovers to fall nearby. This feature was first discovered in
Drosophila and called “crossover interference” (Muller, 1916; Berchowitz and Copenhaver, 2010). I.e. if
a crossover happened at one loci, there is a reduced probability that another crossover will occur nearby,
but this probability increases again as distance increase. This implies the existence of communication
along the chromosomes, the basis for which is still incompletely known. However, we can conservatively
observe that regular homologous segregation in meiosis requires at least one crossover (chiasma): a first
“obligatory crossover” (Jones and Franklin, 2006).

Several models have been proposed, 3 major are based on interference mechanisms:
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• King and Mortimer (1990): a model based on the kinetics of crossover designation and signal
spreading.

• Lande and Stahl (1993): a model based on a mechanism that begins at one end of a chromosome and
“count” double stranded breaks interactions, with crossover-designation occurring after a specific
(nearly) fixed number of precursors.

• Kleckner et al. (2004); Zhang et al. (2014): a model based on the idea that communication for
crossover interference might occur via redistribution of mechanical stress: the “beam film model”.

Another way of modeling crossover patterning is to try to match the observed pattern to any particular
mathematical distribution. Considerable attention has been given to modeling by the Γ distribution,
(often used to analyze crossover patterns), as the "signal" seems to decrease exponentially with distance
away from the nucleating site, and that the sum of i.i.d. exponential distribution is a special case of
Γ distribution (McPeek and Speed, 1995; Falque et al., 2007). This approach only describes the final
outcome of the process, without regard to any other features.

1.2.4 Selection
In this paragraph, we will try to understand how selection, i.e. differences on survival and reproduc-

tion between individual, changes the allele frequencies in a population and what are its impact on the
phenotypic values.

1.2.4.1 Haploid model

Again, to build our intuition, we will start by considering selection at one locus, with two possible
alleles A and a, in a haploid population with discrete non-overlapping generations. In this first approach,
we will not take into consideration the stochasticity in the number of offspring of an individual, we will
only consider a purely deterministic model.

Let NA(t = 0) be the number of individuals of type A at time t = 0 and Na(t = 0) be the number of
individuals of type a. This translates into the following definition of allele frequencies:

fA(t = 0) = NA(t = 0)
NA(t = 0) + Na(t = 0) and fa(t = 0) = Na(t = 0)

NA(t = 0) + Na(t = 0) (1.57)

Let wA the number of offspring of individuals carrying the allele A individual and wa for individuals
carrying a. Here the w�s are also called absolute fitness, and they depend on the probability that an
individual survives to reproduction and the probability that it reproduces, both of which are under the
influence of environmental conditions, a combination of biotic and abiotic factors. However to decipher
the factors leading to differences in absolute fitness won’t be relevant in our case. Furthermore, what
really matters are the differences in w�s values between the two genotypes. To see this, let’s try to
compute the change in allele frequency after one generation:

fA(t = 1) = NA(t = 1)
NA(t = 1) + Na(t = 1) (1.58)

= wANA(t = 0)
wANA(t = 0) + waNa(t = 0) (1.59)

Dividing numerator and denominator by NA(t = 0) + Na(t = 0) gives:

(1.60)

= wAfA(t = 0)
wAfA(t = 0) + wafa(t = 0) (1.61)

Dividing numerator and denominator by wA gives:

(1.62)

= fA(t = 0)
fA(t = 0) + wa

wA
fa(t = 0) (1.63)
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We can see from this last line, that the evolution of allele frequencies, only depends on the ratio between
absolute fitness. A common way of seeing this problem consists in defining a selection coefficient s so
that: 1 − s = wa

wA

fA(t = 1) = fA(t = 0)
fA(t = 0) + (1 − s)fa(t = 0) (1.64)

If we suppose that the differences in reproductive success persists through time, we can show that:

NA(t) = wt
ANA(t = 0) (1.65)

Therefore, by induction on t, we can write:

fA(t) = fA(t = 0)
fA(t = 0) + (1 − s)tfa(t = 0) (1.66)

Figure 1.9 plot the evolution of the an allele A with varying selection coefficients from fA = 0.05
through generations.

From this figure and the limit when t goes to infinity in the last equation, we can see that if an
allele confers even a small increase in the number of offspring to its bearer, and no other forces
acts upon it, it will eventually goes to fixation.
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Figure 1.9: Allele frequency changes through time according to s in a haploid population

From figure 1.9, we can also see that the time, for example to go to fA = 0.5 is not a linear function
of s. If we solve for t, we get:

t = 1
log(1 − s) log fA(t = 0)/fA(t) − fA(t = 0)

fa(t = 0) (1.67)
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Therefore the time to significantly change the initial frequency in an haploid population is pro-
portional to − 1

log(1−s) ≈ 1
s when s is small. In other words, if s is increased by some multiple of

s, from s to Ks, then the time needed to reach the desired value is divided by K.

Furthermore we can see from figure 1.9, that for this deterministic model, the speed of allele
fixation is maximal at t50, the time at which the allele frequency equal 50%. Hence for initial
allele frequency close to the boundaries (0 or 1), the fixation speed tends to 0. Hence, selection
effect on a population might be overpowered by other evolutionary forces like, random genetic
drift when allele frequencies are close to zero or one.

1.2.4.2 Diploid extension

In the same way, if we consider a biallelic locus in a diploid population, we can compute the change
in the genotypic frequency, of, let’s say, AA individuals. We have then:

fAA(t = 1) = fAA(t = 0)wAA

w
with w = fAA(t = 0)wAA + fAa(t = 0)wAa + faa(t = 0)waa (1.68)

If we suppose that this population reproduces randomly, we can compute the change in allele frequency
of A between t = 0 and t = 1. We can show that:

ΔfA = fAfa

w
[fA(wAA − wAa) − fa(waa − wAa)] = fAfa

d ln w

2dfA
(1.69)

From 1.69, two observations can be made:

• The only state of stable polymorphic equilibrium is when the selective value of heterozygotes is
greater than that of both homozygotes (wAa > waa and wAa > wAA). This special situation is
called overdominance and is quite rare in nature (Fiévet, 2004).

• Another special case is when the selective value of heterozygotes is lower than that of both homozy-
gotes (wAa < waa and wAa < wAA). In that case, called underdominance, the frequency of the A
allele can increase or decrease, depending on the value of the ratio fA

fa
as compared to the ratio

waa−wAa

wAA−wAa
.

• In all other cases, the frequency of the most favorable allele will increase until fixation.

• Natural selection leads to the increase of mean population fitness. The speed of change of allelic
frequencies are proportional to d ln w

2dfA
. However, a local maximum can be reached. Then, natural

seletion does not guarantee fitness maximization.

Again, in this equation, fitness is viewed as a relative measure of reproductive success and several
notations can be used:

AA Aa aa
wAA wAa waa

1 + s 1 + hs 1
1 1 − hs 1 − s

Table 1.2: Different fitness notations

s is the selection coefficient, h is called the degree of dominance and both s and h are included between 0
and 1. Dominance affects the speed of fixation by changing the relative selective value of heterozygotes,
as compared to the two homozygotes.
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In the absence of other evolutionary pressures, a favorable allele’s fate depends on the selective
value of the heterozygotes compared to that of homozygotes. There is a state of polymorphic
equilibrium only when the value selective heterozygotes is greater than that of both homozygotes
(called overdominance). In all other cases, an allele is lost. So in general, natural selection does not
allow to explain the genetic polymorphism observed in populations. However notable exceptions
do exists like: frequency dependent selection (w(fA)) and selection varying through time or space
( w(fA, x, y, z, t)).

1.2.4.3 Selection from the vantage point of a quantitative trait and the breeder equation

Until now, we adopted the vision of traditional population genetics and focused more on the change
of allele frequencies due to evolutionary pressures without much focus on the phenotypic trait. If the
previous monolocus models are of considerable importance for discrete traits such as bacterial resistance,
quantitative traits that take continuous values are not as well depicted, as they are encoded by many genes
along the genome. R.A. Fisher, the father of quantitative genetics, while reconciling the Mendelian school
of genetics with the biometricians of his time, proposed a very rich and insightful view of adaptation. We
will start by presenting the effect of selection on a trait, without much focus on the underlying genes be-
fore making the link with population genetics as Fisher did by considering his famous infinitesimal model.
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Fisher’s decomposition of phenotypic effects
Indeed, in 1918, Fisher proposed a probabilistic model of decomposition of the phenotypic value. One
can consider a quantitative trait Y , as the sum of a genetic effect (G), the average effect of a genotype
on its phenotype, and one micro-environmental effects (E). The micro-environmental components of the
parents are independent of those of the children in the absence of environmental correlations, and specific
to each individual. (Note, however, that E can be transmitted in part for all characters having a "social"
component). When two different genotypes respond to environmental variation in different ways, one need
also to include G × E interactions, that we won’t elucidate here. Hence one can write:

Y = G + E + G × E (1.70)

We will neglect G × E interactions for this introduction, and only consider:

Y = G + E (1.71)

Based on Mendelian transmission of genes in a panmictic population, one can further decompose the genetic
effects G into additive effects (A) and non additive effects (NA):

G = A + NA = A + D + I + W with NA = D + I + W where we have: (1.72)

• Additive effects (A) : Each parent transmits to his children half of its additive effects, which corre-
sponds to the fact that a parental gamete, at the end of meiosis, contains half of the genetic information
of the parent.

• Dominance effects (D) : Dominance effects are interactions between alleles at the same locus. When
gametes meet at random, it is impossible to predict the allele received from the mother knowing the
allele received from the father. The dominance effect is therefore specific to each individual. Note
that this doesn’t hold with inbreeding.

• Epistatic effects (I) : Epistatic effects are interactions between alleles at different loci. In the presence
of genetic linkage, some of the effects of epistasis are transmitted as additive effects.

• Meiosis effects (W ) : A parent transmitting half of his genes, he transmits in average half of its additive
genetic value. However, the transmission results from the random draw of a copy of each gene among
the two, the value of the offspring therefore includes a random term.

Notice that all terms above are random variables that can be described by a mean and a variance in
a population. V(Y ) is the phenotypic variance in the population. Because in Fisher’s model, all random
terms A, D, I, W and E are supposed to be independent, we have:

V(Y ) = V(G) + V(E) (1.73)
V(G) = V(A) + V(D) + V(I) + V(W ) (1.74)

In a population, each individual has a different phenotype. Phenotypic similarity between relatives
can only be approached statistically by the measurement of a covariance. However, one can express
the phenotype of an offspring subscripted with the letter o, according to the genetic effects of its father
(subscripted with f) and its mother (subscripted with m):

Yf = Af + Df + If + Wf + Ef

Ym = Am + Dm + Im + Wm + Em

�
⇒ Yo = 1

2Af + 1
2Am + Do + Io + Wo + Eo (1.75)

Recall that the subscripts chosen for the component of Yo are the result of many hypotheses:

• Panmixia : Dominance and epistasis effects in the offspring cannot be predicted.

• Linkage equilibrium : Epistasis effect in the offspring result from the random shuffling of allelic
combinations at different loci.
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• Absence of common environmental effect

Given those hypotheses, the only effects that are transmitted from parent to offspring are the additive
effects. The covariance between a father and one of it’s offspring writes:

Cov(Yf , Yo) = Cov(Af + Df + If + Wf + Ef ,
1
2Af + 1

2Am + Do + Io + Wo + Eo)

= Cov(Af ,
1
2Af ) + Cov(Af ,

1
2Am) Cov(Af , Do) + Cov(Af , Io)+

Cov(Af , Wo) + Cov(Af , Eo) + Cov(Df ,
1
2Af ) + Cov(Df ,

1
2Am)+

Cov(Df , Do) + ... + Cov(Ef , Eo)

Provided the many hypotheses enumerated above, most of the terms are independent leading to a
null covariance :

• Panmixia : Cov(Af , Am) = 0, Cov(Af , Do) = 0, Cov(Df , Do) = 0, ...

• Linkage equilibrium : Cov(Af , I0) = 0, Cov(If , Io) = 0, ...

• No transmission of environmental effects : Cov(Af , E0) = 0, Cov(Ef , Eo) = 0, ...

Thus, remembering that Cov(Af , Af ) = V(A):

Cov(Yf , Yo) = 1
2 V(A) (1.76)

Therefore, the regression line between parent and offspring has a slope bf/o equal to:

bf/o = 1
2
V(A)
V(Y ) = 1

2h2 (1.77)

where h2 is called the narrow sense heritability

With these tools, one can define the widely used concept of heritabilities:

• Broad sense heritability (H2) : The proportion of genetic variance in the phenotypic vari-
ance and is computed as:

H2 = V(G)
V(P ) (1.78)

• Narrow sense heritability (h2) : The proportion of additive variance in the phenotypic vari-
ance and is computed as:

h2 = V(A)
V(P ) (1.79)

We will be very cautious in their interpretation. Heritability must not be confounded with heredity.
Indeed, heritabilities are defined as statistical concepts that are dependent on the population and envi-
ronment in which there are estimated and do not represent the nature of inheritance. Heritabilities
measure the relative parts of variance components in a population. A low heritability does not
mean the absence of genetic determinism, but the absence of genetic variability for the trait in the pop-
ulation. For example, the character "number of ears" in the human population is genetically determined.
The genetic variance is nevertheless very small compared to the phenotypic variance in the population,
which is much more influenced by hairdressers ability, or other mishap... Therefore, the heritability of
the number of ears in the human population is close to zero.
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Indeed, all variance components depend not only on the effect of the genes on the phenotype, but
also on allele frequencies. Variance components and heritabilities can be computed for monogenic traits.
Figure 1.10 shows the variation of the additive (VarA), dominance (VarD) and total genetic (VarG)
variance for trait determined by a single locus with two alleles, A1 and A2 as a function of the allele
frequency of A1.

Figure 1.10: Variance components change with allele frequencies in a panmictic population (in Hardy-
Weinberg equilibrium) of genotypes with a single biallelic diploid locus. Extracted from Petrizzelli et al.
(2019)

Without dominance, the genetic and the additive variance are maximum when the genetic diversity
is maximum, i.e. when fA1 = fA2 = 0.5. When one of the allele is dominant, the additive variance is not
null but captures dominance effects: it is maximum when the allele frequency of the dominant allele is not
too high. Moreover, because in Fisher’s statistical decomposition of genetic effects, dominance terms are
computed after adjusting for additive effect, the additive variance captures non-additive genetics effects.

The effect of selection on a quantitative trait As we have seen previously, selection does not
modify the traits inheritance, but only the underlying allele frequencies, through the changes in the
probability that a parent contributes to the next generation. Let’s consider a panmictic population with
non overlapping generations, and no effect of sex on the considered phenotype. Let’s call Xt the random
variable that describes the phenotypic value of an individual of the population at generation t. X f

t (resp.
Xm

t ) corresponds to the phenotypic value of the father (resp. mother) of individual Xt+1. First, we can
use the parent-offspring regression model to describe the phenotypic value of the offspring at generation
t + 1:

Xt+1 = µt + h2(Xf
t + Xm

t

2 − µt) + �, with � ∼ N (0, σ2) and µt = E(Xt) (1.80)

Now, let’s consider a fitness function giving the probability that a parent of a given phenotype re-
produces: w(x). We first want to compute the mean of the selected parents. This can be achieved by
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integrating on all possible parental phenotypic values, weighted by their respective probability of repro-
duction w(x), and the density ft(x) of the phenotypic values at time t. We have to normalize it by the
integrated product w̄ =

� +∞
−∞ w(x)ft(x), i.e. the mean fitness of the population. We have then:

µs,t =
� +∞

−∞ xtw(x)ft(x)dx
� +∞

−∞ w(x)ft(x)dx
(1.81)

We are now interested in the expected mean of the new generation of individuals. We have:

µt+1 = µt + h2(µs,t − µt) ⇐⇒ µt+1 − µt = h2(µs,t − µt) (1.82)

µt+1 − µt is the difference between the mean of generation t + 1 and the mean of the whole parental
population, also called selection response R:

R = µt+1 − µt (1.83)

µs,t − µt is the difference between the mean of the selected parents at generation t and the mean of
the whole parental population, also called selection differential S.

S = µs,t − µt (1.84)

Written this way, we obtain the famous breeder equation:

R = h2S (1.85)

In other words, the response to selection is proportionally linked to the difference between selected
individuals and the whole population by the narrow sense heritability.

N.B: if we have access to several consecutive generations, several couples (Rt, St) can be computed,
and we can define the realized heritability, as the regression slope of R = f(S).

Selection Types Traditionally, we distinguish several types of selection, characterized by distinct fit-
ness function:
Stabilizing selection: Where selection acts against individual with the most extreme values, the high-
est and the lowest one, whose fitness is minimal.
Directional selection: Where selection acts in one direction against the most extreme of the phenotypic
distribution. One example widely used by breeder is truncation selection, where only individual above
(or below) a threshold are allowed to reproduce.
Disruptive selection: Where selection acts against individual with intermediate phenotypic values.

In the particular case of truncation selection, w(x) = 0 for x lower than the truncation threshold T ,
and w(x) = 1 otherwise, as represented by the red area in (Figure 1.11). Here, S is expressed in the unit
of the measured phenotype and difficult to interpret and compare to other selected trait.
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Figure 1.11: Selection by truncation Phenotypic values Xt a supposed have a Gaussian distribution
in the population. Truncation selection consist in reproducing only the individuals having Xt higher than
a given threshold. µs,t is the mean of the selected individuals.

Therefore it is often normalized by the standard deviation of the trait: S = iσP where σP is the
phenotypic standard deviation, and i is called selection intensity and corresponds to the average value
of the right-tail of a Normal(0, 1) distribution truncated at (T − µt)/σP .

This lead to an other equivalent way of presenting the breeder equation:

R = h2S = σ2
A

σ2
P

iσP = ih2σP (1.86)

This writing emphasizes here the fact that the selection response is proportional to the selection
intensity, the the narrow sense heritability, and the amount of phenotypic variance.

1.2.4.4 The infinitesimal model

The central assumptions of many quantitative-genetic selection models rely on the hypothesis that the
number of loci is assumed to be sufficiently large so that the amount of phenotypic variation attributable
to any single locus is small, and hence the amount of selection on any locus is also small. The infinitesimal
model have been proposed by Fisher Ronald Aylmer (1930) as the as the limit of Mendelian inheritance,
where a phenotypic trait is represented by the total sum of an effectively infinite number of Mendelian
loci, each contributing an infinitesimal amount to the total phenotype. It was mathematically formalized
by Bulmer and Others (1980), and revisited more recently by Barton (Barton et al., 2017).

Under the infinitesimal model, allele frequencies remains approximately unchanged by selection. Se-
lection acts on the mean phenotypic value of a population by summing infinitesimal allele frequency
changes at a large number of loci. To get an intuitive idea of the phenomenon, consider n independent
(in linkage equilibrium) biallelic loci with alleles L and l. Let’s consider that each locus has the same
effects (L having an allelic effects +a and l having an effect equal to zero) and same frequencies (L being
in frequency p and l in frequency 1 − p). Then the expected values for the trait mean and variance are:

µA = 2npa and variance V(A) = 2np(1 − p)a2 (1.87)

For V(A) to be bounded when n → ∞, a need to be in order of O( 1√
n

).
Let’s consider a change in allele frequency Δp, then

ΔµA = 2 · n · a · Δp (1.88)

If a is of order O( 1√
n

), ΔµA will be of order O(
√

n · Δp). If n in large enough, this may correspond
to an observable change in the trait mean value.
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Under the infinitesimal model, the mean value of a trait can change under selection without
noticeable allele frequency changes.

It easily follows that after one generation of selection:

ΔV(A) = 2nΔp(1 − 2p − Δp) (1.89)
≈ a(1 − 2p)Δµ (1.90)

Since a is of the order of magnitude of O( 1√
n

), ΔV(A) is of the order of magnitude of O(Δp) which is
close to zero.

Under the infinitesimal model and linkage equilibrium, selection doesn’t change the additive ge-
netic variance.

1.2.4.5 Selection gradient

Let’s return to the selective value wt(x) associated to phenotype x. Assume that this function is
continuous and integrable for all values of x. The mean fitness of the population is:

wt =
�

wt(x)f(x)dx (1.91)

As we have seen, selection will lead to a mean fitness change, due to a mean trait change. Let’s presume
that Xt ∼ N (µt,V(P )). We want to quantify this mean fitness change, due to a mean trait change. In
other words, we are interested in assessing dwt

dµt
, but to do so we need to use the fact that the fitness of

an individual wt(x) is independent of the phenotypic mean µt of the population and we need to use the
following property:

df(xt)
dµt

≈ f(xt)
xt − µt

V(P ) (1.92)

One find then:

dwt

dµt
= 1

V(P )

��
xtwt(xt)f(xt)dxt − µt

�
wt(x)f(xt)dxt

�
(1.93)

= 1
V(P ) [wtµs,t − µtwt] (1.94)

⇐⇒

µs,t − µt = V(P )d ln wt

dµt
(1.95)
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One can then rewrite the breeder equation as:

R = µt+1 − µt = V(A)d ln wt

dµt
(1.96)

where d ln wt

dµt
is called the selection gradient. It is measured as the slope of the function linking

the population mean selective value to the population phenotypic mean and reflects the strength
of selection on the trait. This formulation, and its extension to the multivariate case, was initially
proposed by Lande (1976, 1979). It highlights three observations:

• The response to selection on a trait depends on both the additive variance and the strength
of selection.

• Selection will move the population phenotypic mean towards a local optimum of the fitness
function.

• The applications of quantitative genetics are not reduced to breeding programs and also
cover the study of evolution in natural populations.

1.2.4.6 Fitness landscape definition

A famous visualization of the relationship between fitness and genotypes has been promoted by Wright
(1932): the concept of fitness landscape. Indeed, if we consider fitness as a function defined on a multidi-
mensional genotypic space, we can represent it on a diagram with one axis representing the fitness value
and one or two axes as projection of the genotypic space, as shown figure 1.12. Fitness landscapes are
often depicted as ranges of mountains, where points from which all paths are downhill, are called local
adaptive peaks, and regions from which many paths lead uphills are called valleys. A fitness landscape
with many peaks and valleys is called rugged. In this landscape, the distance between two points can be
seen as an evolutionary distance.

Hence, adaptation can be seen as the gradual walk of a population towards an adaptive peak.

Figure 1.12: S. Wright’s visualization of a fitness landscape, (Wright, 1932). The two dimensions
represent two phenotypic traits and the contour lines the fitness.
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Three main fitness landscape types have been used:

• Genotypes fitness landscapes: Fitness is considered as a function defined on a multidimensional
genotypic space. This space is not continuous. Instead each points is linked to another through a
mutational network.

• Allele frequencies fitness landscapes: Fitness is considered as a function of allele frequencies.

• Phenotypes fitness landscapes: Fitness is considered as a function defined on a space of phenotypic
traits.

Let’s consider a phenotypes fitness landscape. If all the traits that determine fitness have Gaussian
distributions, we can use the properties of the multivariate normal distribution to extend Lande’s equation
to the multitrait case. For example for two taits A and B, we will have:

�
ΔµA

ΔµB

�
=

�
V(AA) Cov(AA, AB)

Cov(AA, AB) V(AB)

��
βA = ∂ ln wt

∂µA

βB = ∂ ln wt

∂µB

�
(1.97)

Δ−→µ = G
−→
β (1.98)

The β coefficients are called selection gradient and determine the adaptive landscape. G is the
variance-covariance matrix of additive effects. It is called G matrix. By determining the strongest
axes of genetic variation, the matrix G will determine the direction of phenotypic evolution in a
given adaptive landscape.

1.2.5 Other evolutionary forces
In this thesis, I chose to detail the evolutionary forces that will be of particular interest for my work.

Two other evolutionary forces are of importance in evolutionary biology: migration and mating system.
I briefly review here some fundamentals and will develop self-fertilisation (after introducing the concept
of effective population size which is central when considering interacting evolutionary forces).

1.2.5.1 Migration

Migration brings new alleles into a population. From a population genetics point of view, its effect
are similar to those of mutations: a migrant arrives with its haplotypes and it is a source of linkage
disequilibrium. In diploids, effects of migration on allele frequencies depend on whether the migrants
arrived as diploids (the individuals are moving) or haploids (gametes or gametophytes are moving). Also,
migration rates can be much higher than mutation rates.

At one biallelic locus, the admixture of two panmictic populations results in a deficit in the frequency
of heterozygotes, as compared to Hardy-Weinberg proportions. This effect, also known as Wahlund effect
(Wahlund, 1928). , has led to the concept of F-statistics that measures the differentiation between and
within populations (Wright, 1949).

More generally, migration is associated with the concept of metapopulations: the individuals of the
same species form a network of populations that are interconnected by migration (Levins, 1969; Couvet
et al., 1985).

1.2.5.2 Mating systems

In sexual eukaryotes, the mating system describes the encounter of gametes or gametophytes prime
to fecundation. Mating systems typically change the relation between allelic and genotypic frequencies.
The reference mating system is panmixia or random mating, that results, within a single generation in
the Hardy-Weinberg equilibrium. The mating system can be determined by single loci or chromosomes
like in the case of auto-incompatibility or sex determination, or by phenotypic traits like in the case of
homogamy (preference mating between similar individuals) or heterogamy (preference mating between
dissimilar individuals). In all cases, it results either in an excess, or in a deficit of heterozygotes.
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1.3 Interaction between evolutionary forces
Evolutionary forces rarely act alone. Rather, genetic and phenotypic diversity that can be observed in

a population at a given generation are the result of the combination of evolutionary forces during many
generations. Here, I detail theoretical advances that allowed to better understand interactions between
evolutionary forces.

1.3.1 Effective population size: Ne
Wright-Fisher model is very convenient for its mathematical properties but is based on an idealized

view of populations. However, most populations deviate from these hypotheses, especially when they
encounter several interacting evolutionary forces. One way to circumvent this issue would be to design
more realistic models, like Moran models (Moran, 1958) allowing for overlapping generations and used
to model birth-death processes. The results obtained with Moran models, however, often converge to the
ones obtained with Wright-Fisher model, as N increases.

In 1931, S.W. Wright suggested an other approach: the concept of effective population size, which
became essential in population genetics. In simple terms, the effective population size is equivalent
to the number of individuals that an ideal population (like a Wright-Fisher population or
a Moran population) would require to get the same behavior as the focal population. The
different factors affecting Ne have been listed in Charlesworth (2009):

• Variation in offspring number per individual that does not follow a binomial distribution.

• Inbreeding that tends to decrease Ne.

• Changes in population size: for example, population bottlenecks greatly reduce Ne.

• Genetic structure and selection: the long-term maintenance of two or more alleles by balancing
selection results in an increase in Ne at sites that are closely linked to the target of selection. In
contrast, directional selection causes a reduction in Ne at linked sites. This process correspond to
the Hill–Robertson effect.

• Inheritance mode: for example, autosomal, X-linked, Y-linked or organelle.

• Separate sexes and differences in male and female census size (decrease Ne resulting from this
mechanism is encountered in bovine breeding programs).

• Age- and stage-structured populations.

• Spatial structure and metapopulations.

Yet, the many ways to depart from an idealized population do not affect the different properties in
the same way. This led to many different interpretations, and different methods for the estimation of Ne

(Kimura and Crow, 1963; Crow and Kimura, 1971).

Inbreeding effective size (N f
e ): Let’s consider a single locus in an ideal monoecious diploid pop-

ulation, reproducing trough panmixia, with possible selfing, and no selection. A progeny is produced
by randomly drawing with replacement a pair of alleles in an infinite pool of gametes. Let’s consider
the inbreeding coefficient, the probability that two alleles at any locus in an individual are identical by
descent, ft at generation t.

ft = 1
2Nt−1

+
�

1 − 1
2Nt−1

�
ft−1 (1.99)

It corresponds to the probability that the two alleles of the progeny come from the same parental allele
( 1

2Nt−1
) plus the probability that the two drawn alleles don’t 1 − 1

2Nt−1
but were nevertheless identical

by descent in the previous generation, ft−1.
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Now let’s consider a non ideal population, and call Pt the probability that two uniting gametes comes
from the same parent. Then we have:

ft = Pt

2 +
�

1 − Pt

2

�
ft−1 (1.100)

Indeed, the probability that the two alleles of the progeny comes from the same parental allele is equal to
the probability that they come from the same parent Pt times the probability that the probability that
they are the same 1/2.
Then, the two equation are equivalent if:

Pt = 1
Nt

(1.101)

Therefore, one can define the inbreeding effective population size as the inverse of the probability that
two randomly chosen gametes come from the same parent.

Nf
e = 1

Pt
(1.102)

Hence this effective population size definition relies on the number of individuals in the parental popula-
tion.

Now, let’s try to compute Pt more generally. Let’s call kt,i the random variable giving the number
of gametes of individual i at time t, with mean k and variance Vk. The number of ways in which two
gametes can be chosen out of the total number of gametes Nt−1k, is

�
Nt−1k

2
�

of which
�

i

�
kt−1,i

2
�

is the
number of cases in which two gametes come from the same parent. Hence,

Pt =
�

i

�
kt−1,i

2
�

�
Nt−1k

2
� =

�
i kt−1,i(kt−1,i − 1)

Nt−1k(Nt−1k − 1)
(1.103)

After noting that,

k =
�

i kt−1,i

Nt−1
and Vk =

�
i kt−1,i

2

Nt−1
− k

2 and Nt−1k = 2Nt (1.104)

it follows,

Pt = Vk + k(k − 1)
k(2Nt − 1)

(1.105)

Finally, we have:

Nf
e = 2Nt − 1

k − 1 + Vk/k
(1.106)

If the population size remains constant, k = 2, and Nf
e depends on the census population size and

on the variance of offspring numbers Vk

Nf
e = 4N − 2

Vk + 2 (1.107)

The inbreeding effective size is the size of an ideal population that would have the same inbreeding
coefficient as the observed one.

Variance effective size (Nv
e ): In our previous diploid Wright-Fisher model, we have seen that:

V(pt+1|pt) = pt(1 − pt)
2N

(1.108)
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If we estimate V(pt+1|pt) in a sampled population, �var(pt+1|pt) is typically larger than the former vari-
ance, but if we replace the former by the later in the above formula and solve for N, we can derive:

Nv
e = pt(1 − pt)

�var(pt)
(1.109)

Using the same kind of reasoning as for the inbreeding effective population size, Crow and Kimura
(1971) derived the following expression:

Nv
e = (2Nt−1 − 1)k

2(1 + Vk/k)
(1.110)

Here the variance effective size is related to the progenies’ population size.

If the population size remains constant, k = 2, hence:

Nv
e = 4N − 2

Vk + 2 (1.111)

The variance effective size is the size of an ideal population that would have the same variance of
allele frequencies from one generation to the next as the observed one.

We have seen, that if the population size remains constant, N f
e and Nv

e are equivalent. However, they
won’t be if the population size changes. Consider two extreme cases: firstly if one individual gives rise to
many offspring (i.e. Nt−1 = 1 and k → ∞), Nf

e = 1 while Nv
e → ∞; secondly, if each parent gives rise

to only one child, (i.e. k = 1 and Vk = 0), Nf
e → ∞ but Nv

e stays finite.

Coalescent effective size (N c
e ): We can use the derived parameters of the coalescent theory to esti-

mate N c
e . If we place ourselves under the infinite site model, we can define the nucleotide diversity π as

the probability that two nucleotides differ in two randomly drawn individuals, which corresponds to the
probability of mutation before coalescence, which is equal to

π = θ

1 + θ
≈ θ = 4N c

e µ (1.112)

Therefore, knowing the mutation rate and the nucleotidic diversity, one can estimate directly the effective
population size from the nucleotide site diversity.

N c
e = π

4µ
(1.113)

The coalescent effective size is the size of an ideal population that would have the same nucleotidic
diversity as the observed one, given the mutation rate.

If we recall, that the time going back to their most recent common ancestor for an haploid Write-
Fisher population, is equal to 2N(1 − 1/k) in a sample of k individuals, then we can also estimate N c

e

from the estimation of the TMRCA.

Variation in population size through generations: Setting N constant through time, we have
seen that E(Ht) = H0(1 − 1

N )t, but if we allow for fluctuations for Nt we can write:

E(Ht)/H0 =
t−1�

k=0
(1 − 1

Nk
) = (1 − 1

Ne
)t (1.114)
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This equation can be approximated if the Nk are large enough and t small:

1 − t

Nd
e

= t −
t−1�

k=0

1
Nk

(1.115)

or

1
Nd

e

= 1
t

t−1�

k=0

1
Nk

(1.116)

Thus, if population size changes through time, the effective population size can be approached by
the harmonic mean of all population sizes. The demographic effective size is the size of an ideal
population that would have the same decrease of Nei’s diversity index as the observed one.

See here that, Nd
e is highly impacted by the smallest values of Nk, i.e. by demographical bottleneck.

1.3.2 Self-fertilization
Autogamy, or selfing, refers to the fusion of two gametes that come from one individual. Population

geneticists defined the widely used selfing coefficient, σ, the probability of self-fertilization in a population
that can vary widely between species (Goodwillie et al., 2005). Following Julien (2019) thesis introduc-
tion (publicly available in the coming weeks), autogamy, or selfing, is characterised by the decrease in
heterozygosity throughout the genome because of the non independent sampling of gametes during fe-
condation (Caballero and Hill, 1992). In the extreme case in which a population reproduce exclusively
through selfing (σ = 1), the proportion of heterozygous individual at one locus HObs decreases as:

HObs(t) = HObs(0) ×
�

1
2

�t

(1.117)

(Crow and Kimura, 1971). Or in other words, at one locus, initial heterozygozity is expected to be divided
by two at each generation of selfing.

This effect leads to a reduction in the effective population size (Fig. 1.13). But, one first can try to
compare this deficit in heterozygozity to the expected heterozgosity in a panmictic population. This led
to the definition of the F-statistic (Wright, 1949):

FIS = 1 − He

HObs
(1.118)

, where He is the expected heterozygosity in panmixia (2p(1 − p), with p the allele frequency)
Armed with this definition, Pollak (1988) linked this inbreeding coefficient to the inbreeding population

size:

Nf
e = N

1 + FIS
(1.119)

Hence, in complete selfing (σ = 1), i.e. FIS = 1, the effective population size is essentially divided by
two, compared to an allogamous population. Therefore, we expect an increase of the impact of drift
compared to panmixia (Fig. 1.13).

Note, that this increase in homozygosity reduces the impact of recombination, i.e a decrease in effective
recombination rate re (Golding and Strobeck, 1980; Nordborg, 2000). So that :

re = (1 − FIS) × r (1.120)

Indeed, if all loci are homozygous, recombination cannot change haplotypes. In other words, selfing
creates linkage disequilibrium that cannot be removed. This effect can be seen very clearly when compar-
ing the extent of linkage disequilibrium in Arabidopsis thaliana, a highly autogamous plant in which LD
was detected over 100kb (Nordborg et al., 2005), while Tenaillon et al. (2001) showed LD limited to few
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hundreds of bases in allogamous maize. This less efficient recombination leads to an increase in genetic
hitchhiking (Maynard Smith and Haigh, 1974) when selecting for a favorable allele (selective sweep), and
to background selection when counterselecting for a deleterious mutation. These two effects of selection
further deplete neutral genetic diversity (Barton, 2000), especially in autogamous populations (Fig. 1.13).

However, unlike the case of allogamy, a new population can emerge from a single self-pollinated
individual, playing a central role in colonisation events of new habitats (Baker, 1967). However, such
foundation events have drastic effects on adaptive capacity of autogamous populations , due to extreme
genetic diversity decrease, high drift (Whitlock and Barton, 1997).

Figure 1.13: Schematic summary of selfing on adaptive capacity of autogamous population
Extracted from Burgarella and Glémin (2017)

1.3.3 Drift and Mutation : molecular evolution
Interactions between drift and selection have been widely studied to predict the patterns of molecular

evolution. As shown previously, random genetic drift leads to coalescence of pedigrees, and all individuals
of a sample are expected to descend from a single ancestor, the MRCA. All mutations that occurred in
the ancestral path of the MRCA are fixed within populations, but the mutations that occurred on the
different lineages descending from the MRCA constitute the genetic diversity of the population.

Let us consider a diploid population constituted of Ne individuals. Considering a mutation rate µ, we
expect µr mutations in r generations and if we measure time in unit of 2Ne generations, where t = r

2Ne
,

we would expect 2Neµt mutations on a lineage of length t. The number of mutation separating two
lineages is then twice that, i.e. 4Neµt. We can now define the widely used parameter θ = 4Neµ that
measures the nucleotidic diversity. Different methods have been proposed to estimate θ, that rely on two
modeling approaches : the infinite alleles model, or the infinite sites model.

1.3.3.1 Infinite alleles model

This model was suggested by Crow and Kimura (1971), and the following ideas are extracted from
their papers. This model suggests that the number of possible alleles is so great that each mutation
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always corresponds to a new allele. To illustrate this assumption, we can compute the number of possible
sequences for a gene of length 4000bp (mean size of a maize gene): as 44000 = 104000 log 4

log 10 = 102408, among
which 3 × 4000 = 12000 can be reach by a one base change. Therefore, the probability that a mutation
occurs at the same loci is 1

12000 , in this example. The number of possible alleles is essentially infinite.

Inbreeding coefficient In a panmictic population of effective size Ne, Wright (1931) and Malécot
(1948) showed that Ft, the inbreeding coefficient in generation t, or in other words the probability of
identity by descent of two alleles without mutation can be written as:

Ft = 1
2Ne

+ 2Ne − 1
2Ne

Ft−1 (1.121)

If we include mutations, i.e. with (1 − µ)2 being the probability that neither allele is mutated at the
previous generation, it becomes:

Ft = [ 1
2Ne

+ 2Ne − 1
2Ne

Ft−1](1 − µ)2 (1.122)

As we have seen, drift leads to the loss of allelic diversity and mutation is the only force producing
new alleles. Therefore, an equilibrium, the "mutation-drift equilibrium", might be possible. If we set,
Ft = Ft−1 = F , neglect µ2 terms, and solve for F, we obtain:

F ≈ 1 − 2µ

4Neµ − 2µ + 1 ≈ 1
4Neµ + 1 ≈ 1

θ + 1 (1.123)

F can here be seen as the probability that a random individual will be homozygous, or the probability
that two randomly chosen alleles will be identical by descent. If 4Ne << 1

µ , F reaches 1 and all alleles
are identical by descent. If 4Ne >> 1

µ more alleles are expected to be maintained in the population, and
as Ne increases the number of heterozygotes gets larger.

Number of alleles One might be interested in knowing the number of different alleles that are present
in a population. If we look backwards from k lineages, and consider the time between k and k−1 lineages,
there are two possibilities : either a mutation occurs, that will increase the number of alleles by one,
or a coalescence event occurs. A coalescence event occurs with probability k(k−1)

2
1

2N as seen before. A
mutation event occurs with probability kµ. If we measure time in units of 2N generations, coalescence
occurs at rate k(k−1)

2 and mutation at rate kθ
2 . Therefore the probability that a mutation occurs first is:

kθ
2

kθ
2 + k(k−1)

2

= θ

θ + k − 1 (1.124)

and the probability that a coalescence event occurs first is:
k(k−1)

2
kθ
2 + k(k−1)

2

= k − 1
θ + k − 1 (1.125)

Using this reasoning, Watterson (1975) derived an approximate value for the expectation of the number
of alleles Kn found in a sample of size n:

E(Kn) ∼ θ log(n) (1.126)

This gives us an asymptotic estimator of θ: Kn

log n , called the Watterson estimator. Unfortunately, the
variance of Kn is high (V(Kn) ∼ θ log(n)), and the convergence to the approximates value is very slow
(in times proportional to 1

log n ).
Ewens (1972) refined this expression by giving the explicit distribution of allelic occurence in a sample

of size n, also know as Ewen’s sampling formula:

Pr
θ,n

(a1, ..., an) = n!
θ(θ + 1)...(θ + n − 1)

n�

j=1

(θ/j)aj

aj ! (1.127)
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where Prθ,n(a1, ..., an) is the probability of observing a1 allele present one time, ..., ai alleles present i
times, to an allele present n times. Using this distribution, it is possible to derive an estimate of θ from
the observed number of alleles in a sample:

E(Kn) = 1 + θ

θ + 1 + θ

θ + 2 + ... + θ

θ + n
(1.128)

1.3.3.2 Infinite sites model

The infinite alleles model was developed and greatly studied at a time were genetic information was
gathered through indirect means and only few loci were therefore considered. With the advance of
genomics, and the availability of whole genome sequences, the other model also developed by Kimura
(1969), the infinite sites model, became more natural to study. In this approach, the main hypothesis is
that a mutation always occurs at distinct nucleotide/site.

In this framework, we can first try to consider the number of segregating variant, Sn in a sample of
size n. We showed previously, that if N is large and time is measured in unit of 2N generations, the
amount of time in the coalescent during which there are j lineages, tj ∼ Exp( j(j−1)

2 ). If we look at the
whole tree, and compute its total length, Ttot =

�n
j=2 jtj , and take its expected value:

E(Ttot) =
n�

j=2
j E(tj) =

n�

j=2
j

2
j(j − 1) = 2

n�

j=2

1
j − 1 = 2

n−1�

j=1

1
j

(1.129)

As mutation occurs at a rate 2Neµ,

E(Sn) = 2NµE(Ttot) = θ
n−1�

j=1

1
j

(1.130)

Knowing that the harmonic series converge to log(n) when n goes to infinity, the infinite sites model and
the infinite allele model become equivalent for large n. One can also prove that:

V(Sn) = θ

n−1�

j=1

1
j

+ θ2
n−1�

j=1

1
j2 (1.131)

To compute the distribution of Sn is a bit more difficult. But we can try to look at a sample of
size 2. In the previous paragraph, we have shown that the probability that a mutation occurs before a
coalescence event is (replacing by k=2): θ

θ+1 and that the probability that a coalescence event occurs
first is 1

θ+1 . Armed with these, we can compute the probability that S2 = 1, i.e. the probability that a
mutation occurred first and then a coalescence event:

Pr(S2 = 1) = θ

θ + 1
1

θ + 1 (1.132)

Pr(S2 = 2) corresponds to the probability that two mutations occurred before a coalescence event, in
this case:

Pr(S2 = 2) =
�

θ

θ + 1

�2 1
θ + 1 (1.133)

Iterating we obtain:

Pr(S2 = i) =
�

θ

θ + 1

�i 1
θ + 1 (1.134)

Tavaré (1984) refined this expression by giving the explicit distribution of the number of segregating sites
in a sample of size n, Sn:

Pr(Sn = k) = n − 1
θ

n−1�

i=1
(−1)i−1

�
n − 2
i − 1

��
θ

θ + i

�k+1
(1.135)
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Figure 1.14: Probability distribution of Sn. The distribution tends to a normal distribution as n increases.

1.3.3.3 Unfolded and Folded site frequency spectrum (SFS)

The previous distribution constitutes a great insight on how much sanding variation we would expect
to see under mutation and drift alone. However, it gives little information on how it is distributed among
individuals of the same population. An alternative description, widely used among population geneticists,
is the site frequency spectrum. But first we need to define an ancestral allele as the allele of the most
recent common ancestor of the sample, and a derived allele. For single nucleotide polymorphisms (SNPs)
one can attribute 0 to the ancestral state, and 1 to the derived alleles. For example, for n=5 and 3
polymorphic sites, one can write:

Sequences Site 1 Site 2 Site 3
Ind 1 (ancestral) 0 0 0
Ind 2 0 1 1
Ind 3 0 1 1
Ind 4 1 0 1
Ind 5 1 0 1

Then we compute the allele frequencies of the derived alleles (here 2/5, 2/5 and 4/5). And after
that, one can compute the proportion of derived alleles with frequencies equal to 1/n, 2/n, ... n-1/n.
In the example, 0/3 derived alleles have a frequency of 1/5, 2/3 derived alleles have a frequency of 2/5,
0/3 derived alleles have a frequency of 3/5, and 1/3 derived alleles have a frequency of 4/5. Hence the
definition of the unfolded site frequency spectrum, f :

f = (f1, f2, ..., fn−1) (1.136)

where f1 is the proportion of sites whose derived alleles have the lowest frequency possible 1/n (in the
example f1 = 0) and are called singletons, fi is the proportion of sites whose derived alleles are in
frequency i/n, etc. (f = (0, 2/3, 0, 1/3))

What is the expected distribution of the folded SFS under drift and mutation alone ? First, let’s
consider f1 the proportion of singletons, (in frequency 1/n). If a mutation occurs on the external branches
of Kingman coalescent tree, it will result in a singleton. However, if it happens on the internal branches
of the tree, the mutation will be shared by at least two individuals. We can show that the expected length
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of the external branches of the tree is equal to 2, (with time in unit of 2N generation). As we would
expect θ

2 × t, mutations on a branch of length t, the expected number of singleton is only θ. Therefore:

E(f1) = θ

θ
�n−1

j=1
1
j

= 1�n−1
j=1

1
j

(1.137)

Griffiths and Tavaré (1998) used similar considerations to find the expected unfolded SFS, under a infinite
site coalescent model:

E(fi) =
1
i�n−1

j=1
1
j

with i ∈ [[1, n − 1]] (1.138)

However, we see here that the definition of the unfolded site frequency spectrum is dependent on the
knowledge of the ancestral state, but this is rarely possible. One might want to bypass this problem, by
choosing an outgroup, an individual genetically distant from the sample (e.g. an individual of a closely
related species), with the hypothesis that the outgroup is closer to the MRCA. However, one can also
redefine the site frequency spectrum by folding it. This operation consists in defining f∗, by adding
together frequencies of the derived alleles and the ancestral alleles, by setting:

f∗
i =

�
fi + fn−i if i < n

2
fi if i = n

2
(1.139)

In our example, f ∗ = (f∗
1 = 0 + 1/3, f∗

2 = 2/3 + 0)
Then the expected f∗, can be computed as:

E(f∗
i ) =





1/i+1/(n−i)�n−1
j=1

1/j
if i < n

2
1/i�n−1

j=1
1/j

if i = n
2

(1.140)
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Figure 1.15: Expected neutral folded and unfolded SFS under Kingman coalescent and infinite sites model

The SFS is now widely used in molecular population genetics to compare observations to the ex-
pectations under different demographic (e.g. demographical expansion in humans (Marth et al., 2004;
Gutenkunst et al., 2009)) or mutational scenarios (e.g. inference of the distribution of mutational effects
in humans (Boyko et al., 2008)).
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1.3.4 Interaction between selection and mutation
Whenever a new mutation has a selective effect, it will either increase in frequency (beneficial mu-

tations) or decrease in frequency (detrimental mutations). The case of a single beneficial mutation has
already been studied in the previous chapter. Here I detail two cases of interaction between selection
and mutation. First, a detrimental mutation that recurrently appears at the same locus will lead to
cryptopolymorphism. Second, because traits under selection generally have a polygenic basis, I show
how Fisher’s geometric model helped to think about the distribution of fitness effects.

1.3.4.1 Cryptopolymorphism

Let’s consider a biallelic locus A, with two alleles, A in frequency p(t) and marginal fitness effect wA

and a in frequency q(t) = 1 − p(t), wa, so that A mutates to a with probability µ and a mutates to A
with probability ν. After one generation of selection and mutation, we have:

p(t + 1) = p(t)(1 − µ)wA

w
+ (1 − p(t))ν wa

w
(1.141)

p(t + 1) = p(t)(1 − µ − ν)wA

w
+ ν (1.142)

Haldane (1927) studied the diploid case with dominance, so that genotypes AA have fitness 1, geno-
types Aa have a fitness 1 − hs, and genotypes aa have a fitness 1 − s, were s is the selection coefficient
as define above, and h is a dominance coefficient. We can then look at a mutation selection balance and
solve Δp = p(t + 1) − p(t) = 0. By making the assumption that ν � µ, i.e. that the probability of
reversion mutation is negligible, we can find the generic equilibrium frequency of a deleterious allele a:

q∗ = (1 + µ)hs −
�

h2s2(1 + µ)2 − 4(1 − 2h)µs

2(2h − 1)s (1.143)

This simplifies greatly if we suppose that s � µ and h �
�

µ
s :

q∗ ≈ µ

hs
(1.144)

In the particular case where h = 1, i.e. a dominant:

q∗ = µ

s
(1.145)

and h = 0, i.e. A dominant:

q∗ =
�

µ

s
(1.146)

This last case corresponds to the situation known as cryptopolymorphism, where a deleterious mutation
can be maintained in a population at low frequency.

1.3.4.2 Fisher geometric model

In The Genetical Theory of Natural Selection, R.A. Fisher (1930), synthesized his vision of adaptation
in a geometrical model. Fisher’s Geometric Model (FGM) can be interpreted as an integration of the
infinitesimal model in a multidimensional phenotypic landscape. It is mostly used to study the role of
mutational effect in the adaptive response thanks to the small number of parameters it incorporates and
the implicit inclusion of epistasis. For a review of this approach, see Tenaillon (2014).

An individual is represented by a point in a Euclidian multidimensional phenotypic space, where
the axes correspond to combination of traits. The number of independent axes, or dimensionality n,
represents the phenotypic complexity of an organism. An optimum is defined for all traits so that all
individuals close to it are under stabilizing selection. Fisher used an isotropic model meaning that fitness
decays similarly along all axes, but more complicated fitness functions can be included. Lande and Arnold
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(1983) for example used the following quadratic decay function. w(d) = e− d2
2 where d is the distance to

the optimum. One can extend this function to a more informative one as Tenaillon et al. (2007):

w(d) = e−αdQ

(1.147)

where:

• d is the phenotypic distance to the optimum of the reference genotype

• α and Q are robustness and epistasis parameters influencing the decay rate and the curvature of
the fitness function.

Figure 1.16: Fisher’s geometric model. The model is represented here in a two-dimensional space
(n = 2). Any individual A at distance d from the fitness optimum O has the same fitness. A mutation
changes the position of the individual in the landscape and can be represented by it’s vectorial effect r
(in red). The illustration clearly shows that most mutations are expected to be detrimental, especially
when their effect on fitness is large.

Mutations are included in this model through a vector that translates the parental phenotype to a
new position in the phenotypic space. For the sake of simplicity, it is often assumed that a mutation has
no preferred direction and affects all phenotypic axes, in what is called universal pleiotropy. Epistasis
arises from the curvature of the fitness function because a mutation of vectorial effect r will not have the
same effect on fitness if it arises in an individual far or close from the optimum. In other words, the effect
of a mutation depends on the parental genetic background.

Fisher and later Hartl and Taubes (1996) derived from the model the insightful fraction of beneficial
mutations Pben. For n > 10 and the scaled distance to the optimum x = r

2d

√
n:

Pben(x) ≈
�

1
2π

� ∞

x

e− u2
2 du = 1

2 erfc( x√
2

) (1.148)

With erfc the complementary error function, Pben(x) < 1
2 . Therefore, we find the intuitive result that

most mutation are deleterious (Figure 1.16). Furthermore, when mutation effects are small compared
to the distance to the optimum r

d << 1, Pben(x) tends to one half. This is in agreement with both
the micro-evolutionist point of view that suggests that adaptation proceeds through infinitesimal steps
towards an optimal value, and the quantitative genetics point of view (infinitesimal model). Another
interesting result concerns pleiotropy, measured through the dimension of the fitness landscape. As
pleiotropy increases, n increases and x = r

2d

√
n decreases. Hence, as the pleiotropy of the mutation

increases, its probability to be beneficial decreases.
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In Fisher Geometric Model, most mutations tend to be deleterious and the smaller their effects,
the higher their probability to be advantageous.

Overall, this model integrates a rich model of mutation or epistatic interactions that emerges from
few simple parameters: a fitness function, a genotype to phenotype map integrating pleiotropy, and a
well defined mutation model. However, Fisher’s geometric model failed to recognize the important role
of genetic drift that a mutation encounters and has to overcome to go to fixation. Further refinements
have been made: see (Orr, 1998, 2006; Martin and Lenormand, 2008), at the cost of extra approximations
concerning mutations. An important contribution was to tackle the dynamics of fixation of beneficial
mutations where evolution consists in the successive fixation of beneficial mutations. As the distance to
the optimum gets smaller and smaller, the average effect of mutations that ultimately get fixed decreases
at an exponential pace (Orr (1998)). The whole distribution of mutations effects (see Figure 1.7) can
also be computed from this model, but see Tenaillon (2014) and Martin and Lenormand (2006).

We will note that Fisher’s geometric model primarily focuses on the role of de novo mutations with
no explicit standing variation and is widely used to model adaptation of asexual populations, while the
infinitesimal model focuses more on the adaptive process of sexual populations with some standing genetic
variation. "In that process, adaptation is not a single genotype moving in the phenotypic space, but rather
a population of recombining and mutating genotypes, which can be characterized in most conditions by
a Gaussian cloud." (Tenaillon, 2014)

1.3.5 Interaction between drift and selection
As already discussed before, random genetic drift can counteract the effects of selection and may

results in the fixation of a detrimental mutation or the loss of a beneficial mutation by chance. Again,
both population and quantitative geneticists derived mathematical models to describe and predict the
interaction between drift and selection. One one hand, the diffusion equations provide with the probability
of fixation of a single mutation at one locus in a finite population. On the other hand, statistical models
were developed in quantitative genetics to predict changes of genetic variance through time.

1.3.5.1 Fixation probabilities and the diffusion equations approximation

Let’s focus on a Wright-Fisher haploid population of finite size N , and one diallelic locus, with to
allele A and a such that allele a confers a fitness effect of 1 + s, with s the selection coefficient. We
already know that the frequency of a beneficial allele should increase, while that of a deleterious allele
should decrease. However, the stochasticity of genetic drift can cause this trend to dramatically change,
even causing the frequency of a beneficial allele to decrease and the frequency of a deleterious allele to
increase. We mentioned in paragraph 1.2.4.1, that selection has a smaller effect when A is either very
common or very rare. We can wonder what is the probability of fixation of allele a in a finite population,
with competing drift and selection. Kimura (1955), proposed an approximative approach called the
diffusion equation approximation. This method has become a standard technique of population genetics.
The diffusion equation approach uses a Markov chain model similar to what we use in paragraph 1.2.1.
However, the solution to our question requires an extensive knowledge of stochastic processes that are
beyond the scope of this introduction. Briefly, it requires the approximation of a discrete time Markov
chain to a continuous time Markov process, for which the mathematical properties of an operator, called
infinitesimal generator, are used to derive a stochastic differential equation. The diffusion approximation
is accurate when selection is weak compared to genetic drift, i.e.: 2Ns >> 1 for haploid population.

If we call u the probability that allele a, in initial frequency p, will get fixed, we can solve the aforesaid
stochastic equation and show that:

u(p) = 1 − e−2Nsp

1 − e−2Ns
(1.149)

If we consider a de novo mutation in frequency 1
N , we have:

u( 1
N

) = 1 − e−2s

1 − e−2Ns
(1.150)
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A graphical representation is given figure 1.17.

From figure 1.17 and equation 1.150, we can see that the probability for a new mutation to go
to fixation is almost independent of selection for small population size. With the number of
individuals increasing, the efficiency of selection increases, as the greater the selection coefficient,
the greater the fixation probability. However, note that for an increasing population size, the
fixation probability decreases. In other words selection acts on the convexity of the probability
function, and can be seen as a sieve orienting the Brownian motion.
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Figure 1.17: Fixation probability of a new mutation according to the population size

The limits of application of these equations concern spatially structured populations as sub-population
sizes are typically small. Houchmandzadeh and Vallade (2010) have proposed an alternative to the
diffusion equation in population genetics, through the use of probability generating function to derive
partial differential equations. They use this technique to derive analytical results for the Moran process
with selection, among others.

Note that these models do not consider a lot of parameters that are highly influential on the adaptive
process, as population size bottlenecks, geographical structure of populations, lineage-specific mutation
rates, strong selection and environmental variation. Furthermore these equations describe only the be-
havior of one locus, and multilocus complications, like hitchhiking of neutral variation with selected alleles
at linked loci, are not described.

1.3.5.2 The quantitative genetics framework

If we adopt the vantage point of quantitative genetics and consider a trait without much focus on
the underlying loci, we can try to have a glimpse at the evolution of the phenotypic values of a finite
population under selection. A traditional approach, that is widely used, notably by breeders, is the animal
model, whose name comes from its first implementation in animal breeding that heavily relies on the use
of pedigrees, to account for drift and selection. Our "Mixed Models Reminders" gives a quick overview on
the mathematical foundation of Best Linear Unbiased Predictor (BLUP) analysis, allowing us to estimate
the breeding values of individuals. Several implementation of this method have been produced and are
used in breeding programs, or natural population (Kruuk, 2004). We will further exemplify the "animal
model" and the "gametic model" presented in great details in Lynch et al. (1998).
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1.3.5.2.1 Mixed Models Reminders
In statistics, mixed models are derivatives from the standard Gaussian linear model, where some

observations Y = Y1, ...Yn are described as the addition of a fixed effect that depends on explanatory
variables, and a random error following a Gaussian N (0, σ2) distribution. Errors �i are supposed to be
independent (Cov(�i, �j) = 0) and to follow the same distribution (homoscedasticity). The linear model
writes:

Y ∼ Nn(Xθ, σ2In) (1.151)

with Y the vector of observations of dimensions n, X the fixed design matrix for factors or the fixed matrix
containing the explanatory variables for quantitative ones, θ containing the fixed unknown parameters
to estimates, In the identity matrix and σ2 the residual variance. For example, with three observations
{Y11, Y12, Y21}, coming from two different populations with means µ1 and µ2 respectively, we have θ� =
{µ1, µ2}, and

X =




1 0
1 0
0 1


 (1.152)

Contrary to the simple linear model, the mixed model makes it possible to distinguish different
sources of variability and to account for correlations between observations, e.g. genetic correlations in
our case. Therefore the mixed model distinguishes itself from the standard Gaussian linear model based
on assumptions of independence and homoscedasticity. Hence, we move to a model that can be written
as:

Y ∼ Nn(Xθ, Σ) (1.153)

where Σ is of dimension n × n and accounts for covariances between observations.
The expected value of the response vector Y keeps the same shape Xθ than before. Note that by

construction Σ is symmetrical of dimension n × n, hence n(n+1)
2 parameters, that can’t be free, because

only n observations are possible. Therefore, Σ must have a certain structure governed by a number
of parameters called "variance parameters", contained in a vector ψ. The parameters of the model are
therefore on one side θ for expectation and ψ for variance. This limitation in the number of possible
parameters variance can be both seen as a disadvantage, as the mixed model doesn’t allow to directly
estimate the levels of random factors (only to predict them), but has the advantage to better estimate
the variance parameters.

Example: common garden experiment For example, let’s consider samples from m different pop-
ulations of the same species, numbered i = 1, 2, ...m, each represented by ni unrelated individuals,
numbered j = 1, 2, ...ni randomly sampled in the population. We will suppose that the populations
evolved independently from a common ancestor. The model writes

Yij = µ + Ui + Eij (1.154)

where Ui represents the population effect. All Ui and Eij are supposed normally distributed, centered
and independent:

{Ui} i.i.d., Ui ∼ N (0, γ2) and {Eij} i.i.d., Eij ∼ N (0,V(E)) (1.155)

By construction, we have E(Yij) = µ and V(Yij) = γ2 + V(E). This model has three parameters: the
mean θ = µ and two variance components:

ψ =
�

γ2

V(E)

�
(1.156)
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where γ2 represents the variance between populations. However, individuals from the same population
are not independent, because they share a common genetic background or a common provenance effect.
We have:

Cov(Yij , Yi�j�) =
�

γ2 if i = i�

0 if not. (1.157)

We can rewrite this model in a matrix form as:

Y = Xθ + ZU + E (1.158)

where Z is a design matrix (n × m) constructed here as follow:

Za,i =
�

1 if individual a = (i, j) comes from population i,
0 if not. (1.159)

U is a random vector (of dimension m × 1) such that G = V(U) = γ2Im is the population variance-
covariance matrix. We find

E(Y ) = E(Xθ + ZU + E) = Xθ (1.160)

and,

Σ = V(Y ) = V(Xθ + ZU + E) = Z V(U)Z � + V(E) = ZGZ � + V(E) = γ2ZZ � + V(E) (1.161)

Here, Σ is a block diagonal matrix defined as:

Σ =




R 0 ... 0
0 ... ... ...
... ... ... 0
0 ... 0 R


 with R =




γ2 + V(E) γ2 ... γ2

γ2 ... ... ...
... ... ... γ2

γ2 ... γ2 γ2 + V(E)


 (1.162)

It follows the laws of Y conditional on U and the joint distribution of both vectors:

Y |U ∼ Nn(Xθ + ZU, σ2In) (1.163)

�
Y
U

�
∼ Nn(

�
Xθ
0

�
,

�
Σ ZG

GZ � G

�
) (1.164)

Using the properties of Gaussian vectors, on can write the conditional laws of U knowing Y :

U |Y ∼ Nn(GZ �Σ−1(Y − Xθ), G − GZ �Σ−1ZG) (1.165)

BLUP:
In practice, θ and ψ can be estimating through several methods. Maximum-Likelihood and Restricted-
Maximum-Likelihood (REML) are the most used. We can then define the predictor (the term predictor
is used for random effect, instead of estimator reserved for fixed effects, like θ):

Û = GZ �Σ−1(Y − X θ̂) (1.166)

C. R. Handerson (1963) showed, that knowing ψ, this estimator is the Best Linear Unbiased Pre-
dictor or BLUP. And proposed an easiest way to inverse Σ, reducing dramatically the complexity of the
computations.

The Best Linear Unbiased Estimators (BLUEs) of θ, is simply the least-squares estimators:

θ̂ = (X �Σ−1X)−1X �Σ−1Y (1.167)
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1.3.5.2.2 The animal model

The animal model is a mixed model that incorporates the laws of inheritance and takes into account
pedigree relationships between measured individuals. In it’s simplest form, it consists in the direct
observation yi of n individuals, indexed with i = 1..n. The observation can be decomposed as in (1.75):

yi = µ + ai + ei (1.168)

were µ is the fixed factor corresponding to the population mean, and ai = 1/2asi + 1/2adi is the additive
effect, also called breeding value of individual i, that depends on the additive effects transmitted by its
father (sire si) and mother (dam di). All other effects, including non-additive effects and environment
fall into the residual term ei. The model can be rewritten in a matrix form as any other mixed model: or

Y = Xθ + ZU + E with X =




1
...
1


 , θ = µ, Z = In, U =




a1
...
an


 (1.169)

The prediction equations can be derived as previously. However, we need to take into account that
two individuals may be related, i.e share a common ancestor. The great force of the animal model is
therefore to relax the hypothesis of independence between animals. Indeed, if i and j belong to a same
finite population, then

Cov(Yi, Yj) = Cov(ai, aj) = 2ϕij
A V(A) (1.170)

where ϕij
A is the coefficient of coancestry, i.e. the probability that an allele randomly drawn in i is

identical by descent to a randomly drawn alleles from j. Then, the genetic variance covariance matrix G
can also be written G = V(U) = V(A) × A, where A is the n × n relatedness matrix that contains the
coancestry coefficients, and V(A) is the additive component of the genetic variance.

The notion of identity by descent was formally introduced by Malécot (1948) and is illustrated in Fig-
ure 1.18. It describes the probability that two genes derive without mutation from a same ancestral gene
and takes into account mendelian segregation: the probability of transmission from parent to offspring is
1/2.

Figure 1.18: Illustration from G. Malecot (1972)

Then, the coancestry coefficient can be computed from any known pedigree (Figure 1.18) as

ϕI,J
A =

�

k

�
1
2

�(nIk+nJk) �1 + fAi

2

�
(1.171)
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where k is the number of lineages that relate I and J through the common ancestor Ai, and nIk (nJk)
the number of generations between I (J) and Ai. fAi

is the inbreeding coefficient of the ancestor, i.e.
the probability that the two alleles of the ancestor are identical by descent.

The animal model allows to estimate the additive genetic variance V(A) in a finite population from
the measurement of the phenotypic values, provided the pedigree of the measured individuals is
known. It also allows to predict the genetic value (breeding value) of any individual from the
population knowing its pedigree relationships with the observed individuals.

BLUP-animal model can be applied to natural populations (Kruuk, 2004). The model has the advan-
tage of explicitly accounting for both, the effects of random genetic drift and selection, that merely result
in changing the pedigree. However the model does not take into account the introduction of new variation
through mutations. It implicitly assumes that all genetic variation is additive and come from ancestral
polymorphisms. It’s wide application for long-term survey of the evolution of phenotypic variation has
been recently criticized (Hadfield et al., 2010).

Extension of the animal model Notice that the model can be extended to the case of dominance,
by introducing the coefficient ϕD(i, j) of double coancestry : the probability that the two alleles of i are
identical by descent to the two alleles of j. In that case, we have:

Cov(Yi, Yj) = 2ϕij
A V(A) + ϕi,j

D V(D) (1.172)

The table below gives usual values for covariances between related individuals in panmictic popula-
tions:

Relatedness ϕA ϕD cov(Yi, Yj)
Parent-Offspring (PO) 1/4 0 1/2V(A)
Full-Sibs 1/4 1/4 1/2V(A) + 1/4V(D)
Half-Sibs 1/8 0 1/4V(A)
Individual with himself 1/2 1 V(A) + V(D)

Notice that if dominance exists but is not explicitly introduced in the model, dominance terms will
be incorporated in the residual in (1.168). In that case, any departure from random mating will re-
sult in Cov(ei, ej) �= 0 and will bias the estimations. This hypothesis might also be violated through
environmental correlations of phenotypic values.

1.3.5.2.3 The gametic model
For some situations like animal breeding, one might be interested to know the breeding values of let’s

say bulls, for characters that are expressed only through their female progenies, like milk production. We
can use the gametic model to model the additive genetic value of each offspring in terms of its parents
breeding values. Let’s call asi and adi the breeding values of the sire and the dam of individual i, so that:

ai = 1
2(asi + adi) + eai (1.173)

where eai correspond the meiosis effects W . Thus we can write the previous animal model as:

yi = µ + ai + ei = µ + 1
2(asi + adi) + (eai + ei) (1.174)

The same assumptions works in the gametic model as in the previous animal model for the residual ei.
However, one need to take into account here the segregation errors. For non-inbred parents, V(eai) =
1
2 V(A), and for inbred parents, this generalizes to V(eai) = 1

2 (1 − Fsi+Fdi

2 )V(A), Fsi and Fdi being the
inbreeding coefficients of the sire and dam of i.
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1.3.6 Interaction between selection and recombination
As in the previous previous demonstration of the breeder’s equation, let’s consider a trait from the

vantage of the infinitesimal model. We have seen that selection does not change the additive variance
if we suppose infinitesimal allelic effects and linkage equilibrium. However, for loci with strong allelic
effects, i.e. traditional population genetics models show that we can expect changes in allele frequencies
impacting the additive variance. Bulmer (1971) demonstrated the existence of an other effect: the fact
that selection creates a (negative) correlation between loci, or linkage disequilibrium, therefore impacting
(reducing) the additive genetic variance and the subsequent selection response until an equilibrium is
reached. Epistasis is another factor that contributes to changes in the additive variance under selection.

1.3.6.1 Bulmer’s Effect: linkage disequilibrium generated by selection, and subsequent
reduction in additive variance

Let’s consider the effect of selection in a polygenic additive model, were the breeding value of individual
i is the sum of the alleles brought by the two parents:

gi = asi + adi =
�

k

(ak
si + ak

di) (1.175)

The additive genetic variance writes

V(A) =
�

k

�
V(ak

si) + V(ak
di) + Cov(ak

si, ak
di)

�
+ 2

�

k

�

l>k

�
Cov(ak

si, al
si) + Cov(ak

si, al
di) + Cov(ak

di, ak
di)

�

(1.176)

with
�

k

�
V(ak

si)
�

=
�

k

�
V(ak

si)
�

= V(a) being the genic variance. Under random mating, the
covarianceCov(ak

si, ak
di) vanishes. The other covariance term accounts for linkage disequilibrium between

loci. Hence, the additive variance can also be written as:

V(A) = 2V(a) + d (1.177)

where d accounts for covariance between loci due to linkage disequilibrium.

Figure 1.19: Illustration of the Bulmer effect in a two loci case. Selection acts on the sum of the
effects at two loci and creates a negative covariance between their allele frequencies in the population of
selected individuals

In the case of truncation selection (see Figure 1.11) that acts on the sum of individual effects at several
loci, it can be easily shown that selection will create a negative linkage disequilibrium between selected
parents (Figure 1.19).

Indeed, Bulmer (1971) showed that the expected change in the variance during a single generation of
selection is equal to
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V(Yt+1) − V(Yt) = h4
t

2 (V(Ys,t) − V(Yt)) = dt+1 (1.178)

where V(Yt) is the phenotypic variance of the population at generation t, and V(Ys,t) the phenotypic
variance among selected individuals. Because dt+1 is negative, truncation selection leads to the decrease
of the additive genetic variance from one generation to the next:

V(A)t+1 = 2V(a)t + dt+1 (1.179)

This effect is not negligible, even under the infinitesimal model (Van Grevenhof et al., 2012). However,
recall that linkage disequilibrium is broken-down by recombination. Hence, an equilibrium is expected for
the additive variance, between the reduction due to Bulmer’s effect and the increase due to the occurrence
of new gametic combinations through recombination.

1.3.6.2 Epistasis role in the response to selection and transient response

Epistasis is defined as this ubiquitous biological phenomenon that arises when the phenotypic effect
of an allele depends on its genetic context. For example, let’s consider a trait determined by two biallelic
loci A/a and B/b with the following genetic values :

genotype AA Aa aa
BB a + b + abw b −a + b − abw
Bb a 0 −a
bb a − b − abw −b −a + −b + abw

with a, b and w being positive integers, and w is an epistatic coefficient that measures the strength of
the interaction between the two loci. In this model, changing a A allele by a a allele has a negative effect
for BB homozygotes, and a positive effect for bb homozygotes.

In a panmictic population, with pA the frequency of allele A, and qA = 1 − pA the frequency of allele
a, the mean of individuals homozytous for the B locus is µBB = b + (pA − qA)a(1 + bw), and the average
effect of allele A is:

αBB
A = pA (pA(a + b + abw) + qa(b) − muBB) = qAa(1 + bw) (1.180)

Similarly, the average effect of allele A among bb homozygotes is αbb
A = qAa(1 − bw). Altogether, if

pB (qB) is the frequency of allele B (b), we have:

αA = p2
BαBB

A + 2pBqBαBb
A + q2

Bαbb
A = qA (a + (pB − qB)bw) (1.181)

Therefore, in presence of epistasis (w �= 0), additive effects of individual loci do not only depend on the
frequency of alleles at the target locus, but also on allele frequencies at the other loci, event though they
are not polymorphic.

Moreover, additive effects are not sufficient to explain the genetic value Gijkl of any of the nine
different genotypes. Neglecting interactions between loci, we have:

Gijkl = µG + (αi + αj + δij) + (αk + αl + δkl) + �ijkl (1.182)

where α are the additive effects of alleles, and δ the dominance effects. From this equation, we can see that
interaction between loci can arise from different class of interactions: additive × additive (αα), additive
× dominance (αδ), dominance × dominance (δδ). But this kind of decomposition expands exponentially
as the number of loci increases (take for example ααα, ααδ, αδδ, δδδ for three loci). Hence we can write
the decomposition of the genetic variance of a population as:

σ2
G = σ2

A + σ2
D + σ2

AA + σ2
AD + σ2

DD + ... (1.183)
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Epistasis is an universal phenomenon that has two consequences on the genetic variance compo-
nents in a population:

• The additive genetic variance depends on the effects of all the loci that determine the trait,
not only the polymorphic ones Hill et al. (2008). Any change in allele frequencies could
result in modifications of the adaptive landscape.

• Additional variance components need to be taken into account to predict parent-offspring
relationship and the response to selection.

As compared to additive models, three effects of epistasis are documented:
• Epistasis increases the unpredictability of the response to selection by increasing the variance of the

variance of additive effects (Dillmann and Foulley, 1998). This results in changes in the response
to selection due to stochastic changes in the additive variance.

• Epistasis transiently inflates the response to selection through the increase of the effective additive
variance. Indeed, tacking into account non-additive effects like additive by additive interactions,
but also correlation between environments, the parent-offspring regression can be written as:

bf/o = h2

2 + 1
σ2

P

�
σ2

AA

4 + σ2
AAA

8 + ... + Cov(Ep, Eo)
�

(1.184)

Assuming a linear bi-parental regression gives the expected response to selection after one generation
of selection:

R = 2bf/oS = h2S + S

σ2
P

�
σ2

AA

2 + σ2
AAA

4 + ... + Cov(Ep, Eo)
�

(1.185)

By considering only additive×additive epistasis, we have:

R = S

�
h2 + σ2

AA

2σ2
P

�
(1.186)

Griffing (1960) shows, that if we relax selection for t generation, the permanent response to selection
will be less that the previous transient response inflated by epistasis, as recombination will break
loci associations:

R = S

�
h2 + (1 − c)t σ2

AA

2σ2
P

�
(1.187)

Hence, even with the transient role of epistasis to the selection response, few generations of panmixia
will make the selection response converge to the classical breeder equation.

• Epistasis constantly inflates the response to selection because at each generation, phenotypes rep-
resent only a limited part of possible variation, given the range of possible multiloci combinations.
Even infinitesimally small changes in allele frequencies trigger the emergence new genetic combina-
tions (Barton, 2017). Figure 1.20 shows the mean response to selection and corresponding changes
in additive (VA) and additive by additive (VA) variance under the infinitesimal model. Simulation
shows that with epistasis, the response to selection can be much more important, albeit a long-term
decrease of additive genetic variance comparable to the neutral expectation.

1.3.7 Interaction between selection, drift, and mutation
Population genomics focuses on, first recovering signatures of selection in the genome, and subse-

quently ask which trait were affected by selection. Quantitative genomics instead seeks at understanding
the selection response for a trait and then asks what are the implication on the genomes. In real life,
mutations affect a set of phenotypic traits that are "then" submitted to selection. I will briefly present
here a quantitative genetics extension of the mixed model equations that accounts for mutations. I will
then present population genetic models that trace the genomic signatures of beneficial mutations that
increase in frequency in a population. Finally, I will review recent extensions on polygenic adaptation.
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Figure 1.20: Response to selection in the infinitesimal model. Directional selection (lines) is
compared with the neutral case (dotted lines) with (bottom) or without (top) epistasis. The model
considers M = 1000 loci in a population of N = 100 haploid individuals. At each locus, alleles have the
same affect but an arbitrary signγ = +/ − 1√

M
. Epistasis was simulated by drawing a small fraction

1/M of interactions between pairs of loci wij in a normal law of null expectation and standard deviation
4√
M

, with possibly wij �= wji. Phenotypic trait value is defined as z = δγ + δT wδ, with δ = +/ − 1/2.
Initial allele frequencies were drawn in a U-shaped Gamma distribution with mean p̄ = 0.2 and variance
0.2p̄q̄. Parents selected to form the next generation are drawn accordingly to their selective value with
W = eβz. Grey areas represent +/− one standard deviation around the mean. Adapted from Barton
et al. (2017).

1.3.7.1 The BLUPM: how to take into account de novo mutation

In the previous section, the mixed model used to estimate breeding values ignored the effects of
mutations, which is reasonable in many settings. However, for multiple generation pedigrees like the ones
found in long-term evolution experiments, mutations cannot be ignored. Wray (1990) proposed a model
that aims at considering de novo mutation, based on the idea that a new mutation introduces additional
dependencies between breeding values in the progenies of a mutated progenitor. The author showed:

V(U) = σ2
A0

�
A + σ2

m

σ2
A0

G�

g=1
Ag

�
(1.188)

where:

• σ2
m corresponds to the rate of additional additive mutational variance due to mutations,

• σ2
A0 corresponds to the initial additive genetic variance found in the base population due to standing

variation,

• A is the standard relationship matrix ignoring mutation,

• Ag is a relationship matrix that ignores ancestors between generations 0 and g − 1.

Under this model the A matrix is updated each generation by adding an additional relationship between
progenies of the previous generation. This implies, that the rate of input of new mutational variance is
constant through generations, which might be relevant for large population size. However, this model
fails to account for stochasticity of the mutational process which may not be negligible for small mutation
rates and small mutational targets, and when mutations may occur outside the focal generation. Here,
the model considers a constant mutational input through time.
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1.3.7.2 Genomic signatures of the adaptive processes

In our attempt to exemplify how the interplay between evolutionary forces changes allele frequencies
during adaptation, we need to present three major scenarios developed by population geneticists, that
predicts distinct genomic footprints.

Hermisson and Pennings (2017) define selective sweeps as the patterns in genomic diversity that
are caused by recent adaptation due to genetic hitchicking (Maynard Smith and Haigh, 1974). These
footprints arise when beneficial mutations increase due to positive selection, and the genealogical histories
of the samples at the surrounding loci are distorted because of genetic draft, i.e. the increase in frequency
of the surrounding alleles at neighbor loci due of linkage disequilibrium. Recall that positive selection
tends to decrease the fixation time compared to the neutral case, hence in a coalescent approach, looking
back at time, selection decreases the coalescence time distorting the genealogies to star-shape genealogies.

1.3.7.2.1 Hard sweep
This case can be defined formally as the scenario for which the TMRCA is more recent than the

time at which the selective pressure started to act (TS , the onset time of selection). For example, when
a change of environment precedes the appearance of a new beneficial mutation. This leads to a strong
decrease in genetic diversity at the selected loci and it surrounding region. Because coalescence is quicker
than recombination in this case, recombination events mainly occur on external branches (the leaves).
I.e most neutral variation at the flanking region is found as singletons, with an increase in both low and
high derived variant frequencies compare to the neutral SFS, Figure 1.21 A.

The example of the population genetics behind a hard sweep: (Adapted from Walsh and
Lynch (2018))

In order to get a glimpse at the mechanisms acting behind a hard selective sweep, we can consider
the following model. First, consider diploid population of size N with a neutral allele m, associated to a
biallelic locus A, with 2 alleles A (in frequency p(t)) favored by selection and a (in frequency 1 − p(t)) as
usual. We can define q(t) the frequency of m at generation t after the onset of selection leading to the
sweep. Hence q(∞) represents the frequency of m after the sweep completion. If there is no recombination
between locus A and allele m, it follows that the final frequency of m is q(∞) = 1. However, if there
is recombination, we can expect q(t) to be a function of c/s: the ratio of the recombination rate c that
tends to separate the neutral allele from the selected site, and s the selection coefficient of allele A at the
favored site that drags the allele m.

To study the evolution of the allele frequency of m, we can use the conditional decomposition of q(t):

q(t) = qA(t)p(t) + qa(t)(1 − p(t)) (1.189)

so that qA(t) corresponds to the frequency of allele m on haplotype carrying allele A, and qa(t) corresponds
to the frequency of allele m on haplotype carrying allele a. When allele A is fixed, we have q(∞) = qA(∞)
which is the fraction of A-bearing haplotypes still carrying allele m. We can then define δq(t) = qA(t) −
qa(t) the difference in the frequency of m on the two backgrounds, so that δq(t) �= 0 implies linkage
disequilibrium between A and m. We are also interested in Δq = q(∞) − q(0) the change in allele
frequency of m due to the selective sweep.

We can see that if we normalize Δq by the initial difference in frequency of m on the two backgrounds
δq(t), we can access the strength of the selective sweep:

fs = Δq

δq(0) = q(∞) − q(0)
qA(0) − qa(0) (1.190)

Said otherwise, fs corresponds to the fraction of the initial excess of association between m and A, after
the sweep completion.

In the case of a hard sweep, the new selected allele A is introduced in one copy in the population,
hence qa(0) ≈ q(0), as all, minus one copy of m, are on haplotypes carrying allele a. Following the same
argument, qA(0) = 1.
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Therefore, we can rewrite fs as:

fs = Δq

δq(0) = q(∞) − q(0)
qA(0) − qa(0) = q(∞) − q(0)

1 − q(0) (1.191)

⇐⇒

q(∞) = q(0) + Δq = q(0) + fsδq(0) = q(0) + fs(1 − q(0)) = fs + q(0)(1 − fs) (1.192)

Hence the final frequency of m can be expressed as a function of its initial value and of the sweep strength.
Furthermore, we can note that the frequency of the neutral allele m in both backgrounds only changes
trough recombination, so that we have:

δq(t) = qA(t) − qa(t) = (1 − c)t(qA(0) − qa(0)) ≈ δq(0) e−ct

Barton (2000) showed that we can express Δq as:

Δq ≈ δq(0)p(0)c/s (1.193)

Hence, when c/s � 1 i.e. selection is much stronger than the recombination rate as in the vicinity of
the selected allele, most initial linkage remains but this tend to 0 as more distant site are considered (i.e.
c/s increases).

Using this result, we can estimate the strength of a hard sweep as a function of c/s:

fs = Δq

δ(q) = p(0)c/s (1.194)

And this allows accessing the frequency of m after the sweep completion, as a function of its initial value,
the frequency of allele A, the recombination rate and the strength of selection:

q(∞) = p(0)c/s + q(0)(1 − p(0)c/s) (1.195)

Again, the strength of the selective sweep increases as c/s diminishes, either because selection increases
or because c decreases.
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Figure 1.21: Hard and soft sweep types. Colored regions mark the frequency of copies of the beneficial
allele that still have descendants at the time of sampling. Black and dashed lines show coalescent histories
at linked sites. On the right, mutation and recombination events are also shown on haplotypes of the five
sampled individuals. (a) For a hard sweep, the time to the most recent common ancestor (TMRCA) at
the selected site TMRCA is more recent than the onset of selection TS . All ancestral variation at tightly
linked sites is eliminated. Recombination leads to low-frequency and high-frequency derived variants
in flanking regions. (b) For a single-origin soft sweep from standing genetic variation, TMRCA occurs
before the onset of selection so that multiple haplotypes carrying the beneficial allele are present in the
‘standing phase’ before TS . Early recombination produces variants at intermediate frequencies. (c) The
beneficial allele traces back to multiple origins. Each origin introduces an ancestral haplotype, typically
at intermediate frequency. Hermisson and Pennings (2017)
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1.3.7.2.2 Soft sweep
Here, with TN , the expected neutral coalescent time, we have TN > TMRCA > TS (looking backward

in time). This happens for example when an environmental change occurs and selection acts upon pre-
existing standing variation. Hence, the MRCA predating the onset of selection, recombination had more
time to create new haplotypes.

• If the same beneficial mutation have been selected from several haplotypes, this scenario is referred
to as a ’single origin soft sweep’.

• If several beneficial mutations have been selected from several haplotypes, one can talk of ’multiple
origin soft sweep’.

Figure 1.21 is extracted from Hermisson and Pennings (2017) and illustrates the link between sampled
haplotypes on the right and their genealogical history on the left, in the case of hard sweep, soft sweep
originating from a single origin, and soft sweep originating from multiple origins.

Effective population size primarily determines the likelihood of soft sweeps. Hence, Messer and Petrov
(2013) have shown that when θ (four times the product of effective population size and the beneficial
mutation rate) is equal or above 1, and selection is strong enough, adaptation proceeds from multiple de
novo mutations or standing variation. Below 1, soft sweeps’ contribution diminishes with theta.

1.3.7.2.3 Polygenic adaptation: Towards an integration of population and quantitative
genetics

We have seen that the genomic signatures left by a selective sweep is a function of the selection
intensity, that is significantly diminished under soft sweep scenarios. Hence, weak selection using standing
variation at a number of loci is the worst-case scenario for sweep detection. In the most extreme case
of the infinitesimal model, we have seen that a significant shift in the mean can occur with almost no
detectable allele-frequency changes. Hence, in a case where a trait is encoded by many loci of small
effects, we expect polygenic adaptation to leave almost no genomic signal.

Chevin and Hospital (2008) extended the theory of hitchhiking of a locus affecting a quantitative trait
to account for background genetic variation at other loci. The dynamics at the focal quantitative trait
locus is related to the initial genotypic value and to the background genetic variance of the trait. Using
analytical approaches, they derived the conditions for a selective sweep, and the expected patterns of
genetic diversity diversity at the end of the sweep. They showed that selective sweeps were possible, even
for highly polygenic traits. However, while the dynamics of the focal locus clearly depends on the mode of
selection (linear, exponential or Gaussian), the selection coefficient of the beneficial mutation decreases in
time because of background genetic variance (Figure 1.22). Overall, phenotypic traits exhibiting clear-cut
molecular signatures of selection may represent only a small subset of all adaptive traits.

Figure 1.22: Dynamics of fixation of a beneficial mutation for a polygenic trait submitted to direc-
tional selection. The dotted line represents the dynamics without background genetic variance. With
background genetic variance, the selection coefficient of the beneficial mutation decreases through time
therefore increasing the time to fixation (adapted from Chevin and Hospital (2008)).
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Stetter et al. (2018) used extensive forward-time simulations and machine-learning algorithms to
understand the complex interplay of mutation, selection, and demography on the genomic signatures of
polygenic adaptation. In agreement with Chevin and Hospital (2008), the authors showed that selective
sweeps occur even for traits under relatively weak selection where the genetic background explains most of
the variation. Most sweeps occur from variation segregating in the ancestral population, nevertheless new
mutations can be important for traits under strong stabilizing selection that undergo a large optimum
shift. They emphasized the role of bottlenecks and expansions on the overall genetic variation as well
as the relative importance of sweeps from standing variation and the speed with which adaptation can
occur.

Höllinger et al. (2019) used newly devised analytical framework based on Yule branching processes
and computer simulations to show the major role of the population-scaled background mutation rate
θbg. For a focal locus, θbg measures the mutation rate at all redundant loci in its genetic background
that offer alternative ways for adaptation. To do so, they modeled a binary polygenic trait (such as
resistance to a pathogen) with negative epistasis. Compared to the infinitesimal model, the authors
emphasized that for a finite number of loci, polygenic adaptation pattern are expected to occur if alleles
are able to hamper the rise of alleles at other loci via negative epistasis for fitness. Indeed, they stated
that one would otherwise only observe parallel sweeps. Note that negative fitness epistasis is frequently
found in empirical studies, e.g. due to Michaelis-Menten enzyme kinetics, and is implicit to the Gaussian
selection scheme. Recall that we have seen previously in Fisher geometric model, that a mutation might
overshoot the optimum depending on the genetic background. Höllinger et al. (2019) divided their model
of the adaptive process into two phases, a stochastic one and a deterministic one. They derived for several
extensions of their model (like linkage disequilibrium, partial redundancy...) the joint distribution of allele
frequency ratios of minor over major loci after the stochastic phase. Then, they showed that the ratio is
given by an inverted Dirichlet distribution, from which we can extract the distribution of allele frequencies.
Furthermore, they predicted that the distribution of these ratios is preserved during the deterministic
phase. Interestingly, they showed that adaptation proceeds by sweeps for small θbg ≤ 0.1 and that small
polygenic allele frequency shifts require large θbg ≥ 100, in compliance with the infinitesimal model. In the
large intermediate regime, they observed a heterogeneous pattern of partial sweeps at several interacting
loci.

1.3.8 Long term Selection Response and the limits to selection
A pervasive question in quantitative genetics concerns the limits to the response to selection. While

living forms are in constant evolution, what should happen in a finite population submitted to a constant
selection in a constant environment ? On one hand, there could be of course physiological limits for
some trait values. On the other hand, mutational targets may not be infinite and drift may limit genetic
variation.

1.3.8.1 Selection Limits under Drift

Drift impact on the additive genetic variance:

We have previously shown that the allele diversity decreases through time as a function of the popu-
lation size, (E(Ht) = H0(1 − 1

N )t, for a haploid population). As the genic variance is a function of allele
frequencies that change because of drift, we can also show that for a diploid population, we have:

σ2
a(t) = σ2

a(0)
�

1 − 1
2Ne

�t

(1.196)

Hence, the evolution of the additive variance of quantitative traits submitted to drift alone is expected
to decay geometrically trough time as a function of the effective population size.

Robertson’s Limit of cumulative selection response:

To show the evolution of the selection response through time, Robertson (1960) ignored the effect of
linkage disequilibrium, assumed σ2

A(t) = σ2
a(t), a constant phenotypic variance, and a constant effective
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population size. He showed:

R(t) = i
σ2

A(t)
σP

=
�

1 − 1
2Ne

�t

i
σ2

A(0)
σP

=
�

1 − 1
2Ne

�t

R(1) (1.197)

Hence, we can derive the expected cumulative response to selection by first noting that:

T�

t=0

�
1 − 1

2Ne

�t

≈ 2Ne

�
1 − e− T

2Ne

�
(1.198)

Therefore the cumulative response at generation T is equal to:

R(T ) = 2Ne

�
1 − e− T

2Ne

�
R(0) (1.199)

As T tends to infinity, the upper limit for the expected cumulative response due to the exhaustion
of genetic variance by drift is 2Ne times the initial response.

According to Walsh (2010), this upper limit is a reasonable one as soon as the selection intensity or
the effect of drift remains small at any given locus.

Chevalet’s extension for finite population size and loci number:

Based on (Lande, 2008) and Felsenstein (1977) work, Chevalet (1994) extended Bulmer’s equation to
the case of finite population size (Ne) and loci number (n) experiencing truncation selection under an
infinite allele model.

Δσ2
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(1.200)

Δd(t) = −1
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(1.201)

k = i(i − z[1−p]) with z[p] defined as Pr(U ≤ z[p]) = p and U a unit normal distribution.

Taking into account a finite number of loci and linkage disequilibrium, the limits to selection
response scales as the inverse of both effective population size and number of loci.

1.3.8.2 Selection Limits under Drift and Mutations

If we consider the additive variance due to mutations at one generation, σ2
m, we can write the following

recursion equation:

σ2
A(t) =

�
1 − 1

2Ne

�
σ2

A(t − 1) + σ2
m (1.202)

This recursion equation can be solved to give approximately:

σ2
A(t) ≈ 2Neσ2

m +
�
σ2

A(0) − 2Neσ2
m

�
e− t

2Ne (1.203)

Therefore, one can compute the expected genetic additive variance at drift mutation equilibrium,
when t tends to infinity.

σ2
A(∞) = 2Neσ2

m (1.204)
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Following Hill (1982a); Wei et al. (1996); Weber and Diggins (1990) the expected cumulative response
after T generations can be computed as:

R(T ) ≈ 2Ne
i

σP

�
tσ2

m +
�

1 − e− t
2Ne

� �
σ2

A(0) − 2Neσ2
m

��
(1.205)

When t → ∞, the term tσ2
m corresponds to the asymptotic response and dominates as the initial

standing genetic variance σ2
A(0) vanishes.

The balance between the exhaustion of initial genetic variance by drift and the constant input of
new mutations leads to a constant response that scales with the mutational variance σ2

m.

1.4 The role of new mutations in the response to selection :
Saclay’s Divergent Selection Experiments (SDSE)

Experimental evolution is a method of choice for testing predictions in evolutionary biology. It consists
in monitoring populations that evolve under controlled conditions. The selection pressure can be known
(e.g selection to increase or decrease the value of a trait) or determined by the controlled environmental
conditions (e.g Lenski’s experiment on the adaptation of a E. Coli strain to lab conditions). In all cases,
the dynamics of adaptation can be monitored at the genomic scale and at the traits level.

Divergent selection experiments (DSEs) consist in splitting-up an initial population into at least two
sub-populations submitted to divergent selection regimes.

 

Generation 0

Generation 1

Generation n

Trait value

Frequency

Reproduction & Selection

Reproduction & Selection

Figure 1.23: Divergent Selection Experiments principle Starting from an initial population rep-
resented here by its distribution of phenotypic values, extreme individuals (with the lowest and the
highest phenotypic value) are selected, and define two new independent populations that are selected and
reproduced independently at each new generation.

Saclay’s DSEs were set-up in 1993 from maize inbred lines seed-lots characterized by a very small
amount of standing genetic variation (Durand et al., 2010). Populations were selected for early or late
flowering date, which is an important agronomical trait for maize cultivation with a polygenic basis.
Although maize is an allogamous species, the mating system employed was selfing. The other conditions
of the experiment were constrained by practical reasons and led to a high selection pressure (1% of the
population each year), high drift (5 individuals selected in each population) but relatively high census
number in each population (500 individuals).
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The initial questions of the experiments were the following :

• How far can we change flowering time in maize from new mutations ?

• What are the genes targeted by mutations ?

• What is the dynamics of fixation of beneficial mutations ?

Altogether, a constant response to selection was observed in both directions. At the beginning of my
PhD, genomic resources had been produced (RNA-Seq) from evolved lines from the 13th generation of
selection, and an evaluation trial (generations G0 to G18) was planned.

1.4.1 Saclay’s divergent selection experiments for flowering time in Maize
1.4.1.1 Maize flowering time

The term floral transition designates in plants the developmental process through which a plant switch
from vegetative growth to reproductive growth. This key developmental stage governs the whole life of
the plant and primarily determines flowering time, but also linked characteristics such as the plant height,
total number of leaves, or grain fill.

Flowering time has been shown to be a complex trait displaying in maize large ranges of variablity,
with flowering dates occurring between 35 to 120 days after sowing (Colasanti and Muszynski, 2009).
In maize, Buckler et al. (2009) showed that that the trait is associated to roughly hundred small effects
QTLs, characteristic of highly additive polygenic traits.

However, very few genetic determinants have been characterized at the molecular level. The gene
network associated to floral transition, represented Fig. 1.24, is characterised by the interaction of sev-
eral different metabolic pathways integrating environmental and developmental information, such as the
gibberellins pathway (e.g. with the Dwarf 8 gene region (Thornsberry et al., 2001; Andersen et al., 2005;
Camus-Kulandaivelu et al., 2006)), the aging pathway, the circadian clock, the photoperiod pathway
(e.g. with the gene ZmCCT (Ducrocq et al., 2009; Coles et al., 2010) and CONSTANS-like gene (conz1)
(Miller et al., 2008)), or the autonomous pathway (e.g. Indeterminate gene (Id1) (Colasanti et al., 1998)).
These different pathways are integrated through the interaction of different genes, such as the activator
ZMM4, the vegetative to generative transition 1 gene (vgt1) (Salvi et al., 2007), or ZCN8 (Meng et al.,
2011) produced in the leaf navigating to the meristem to interact with the delayed flowering1 gene (dlf1)
(Muszynski et al., 2006).
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Figure 1.24: Flowering time known underlying gene network Extracted from Tenaillon et al. (2018)

1.4.1.2 Initial inbred lines

Two certified maize inbred lines were used as initial populations: an american flint, F252, registered
in 1979 by the company Agri-Obtention, and a late iodent dent, MBS847 (MBS for later on), registered
by the company Mike Brayton Seeds in 1982 (Durand et al., 2010).

We do not exactly know the selection scheme used to produce these two inbred lines. However, we can
make the assumption that they have been produced through a classical maize breeding scheme developed
by Hopkins in 1908. This method is called the ear to row method adapted to produce inbred lines by
Single Seed Descent, where inbreds are obtained from F1 hybrids after 6 to 8 generation of selfing and
selection. During this step, a number of plants are selected on the basis of their phenotype. They are
selfed and seeds are harvested on single plant basis. A single row of 10 to 50 full-sibling progeny coming
from a same ear is raised. The progeny rows are evaluated and the best progenies for the chosen traits
are identified. It corresponds to a Single Seed Descent scheme where the whole ear is planted to allow a
better evaluation of the genotype of the parent. Selfing is done manually to control for outcrossing. The
last generation consists in producing a pre-base seed lot by harvesting the selfing progenies of the selected
individual. The pre-base seed lot is then submitted to control for homogeneity before registration. Then
the base seed lots are produced by two generations of bulk in isolation. In France, registration of a variety
requires three main criteria that are homogeneity, stability and distinction. This process is controlled
and certified by SOC http://www.gnis.fr/. It ensures a level of homozygosity for the base seed lots.

Our experiment started in 1993, long after the first registration of these varieties. This suggests
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that these base seed lots had undergone several generations of multiplication from the initial pre-base
population, with the same protocol as the production of base seed lots from pre-base. Therefore, we
expect the mean residual heterozygosity to range between ( 1

2 )8 = 0.39% and ( 1
2 )12 = 0.0244% validated

in Durand et al. (2015). We also expect polymorphisms between pre-base individuals. This would also
lead to fixed differences in the base population. Each inbred line was treated separately as an independent
biological replicate of the selection experiment. However, they do not constitute true replicates as different
genetic features might differentiate them and lead to different response to selection.

1.4.1.3 Experimental protocol

These long-lasting field experiments have been taking place since 1993 in Gif-sur-Yvette on Saclay’s
Plateau. All selected seeds are stored at 6°C in a cool chamber, and the pedigree information have
been carefully recorded, producing a unique genetic material with corresponding phenotypic information.
Furthermore, few changes in the selection scheme have been made throughout the years and are included
in the presentation hereafter and schematized Fig. 1.25.

1993 - G0: For each genetic background, F252 and MBS, 60 plants were grown in fields condition,
female flowering time was recorded and the 3 earliest (and 3 latest respectively) plants were selfed and
their kernels harvested, constituting the G0 parents of three families of the Early, respectively Late
population.

1997 - G1: 100 progenies of the 3 selected plants per population were grown in a randomized block
design, with 25 plants per row sown together at a density of 25000 plants/ha and a spacing between rows
of 80 cm. Selfing was made when both male and female flowering occurred, and the selfing date date
was recorded in days after July 1st. This step imposes a selection pressure against long Anthesis-Silking
Intervals (ASI). The basal kernels were harvested and weighted. We selected in the Early (respectively
Late) populations the 10 earliest (resp. latest) flowering plants with the highest kernel weight. This
additional selective pressure assured us a lesser inbreeding depression that could further impede our
selection process.

1998 and later - G2 to Gn: To better control for environmental effect, each of the 4 rows representing
the 100 progenies of a selfed plant were sown in a randomized block design, independently for the
populations of MBS and F252. The sowing density was 25000 plants/ha and 80 cm between rows.
More accurately, from each selected parents, 100 seeds were distributed into 4 different blocks (25 seeds
in each). Each block was constituted of two plots of 11 rows each (one plot for the Early population, one
for the the Late). One random row was dedicated to 25 plants of the initial seed lot as control and the
10 remaining rows were randomly sown with 25 seeds of the 10 parents selected previously. Early and
Late plots were alternatively distributed along the blocks. The 3 earliest (resp. latest) flowering plants
were selfed within each row (except the border plants). Their basal kernel were harvested, weighted and
stored in a cool chamber at +6°C. Later on, a second step of selection was made based on additional
constraints:

• 10 earliest (resp. latest) plants are selected in each population,

• between two plants of equivalent earliness, the plant with the highest kernel weight was chosen,

• we did not select more than three plants from the same parent,

• we did not select more than two plants from the same row,

• we maintained at least two lineages per population of the initial parents selected in 1993, called
families in the rest of the thesis.

Overall MBS genealogy (Appendix A.) can be decomposed into two independent early flowering
families subsequently called MP049 and MP052 forming the early population, and two independent
late flowering families MT040 and MT053 forming the late flowering population. In F252, two early
independent families also constituted the early population. The late flowering population started as
two independent families, the late FT031, and the late FT027. Despite a very strong selection response
(Durand et al., 2010, 2015), FT027 did not produce seeds at generation 14 (flowered to late in the season),
and could not be maintained further. FT031 was then divided into two subfamilies FT317 and FT318
sharing a common ancestor at G3 (Appendix A.)
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Figure 1.25: Experimental scheme of Saclay DSEs. For clarity a single scheme is shown but was
replicated for the two DSEs. Starting from an inbred G0 population with little standing variation (< 1%
residual heterozygosity (Durand et al., 2015)), the three earliest (resp. latest) flowering individuals
represented in blue (resp. red) were chosen based on their offspring phenotypic values as the founders of
two families forming the early (resp. late) population. For the subsequent generations, 10 (≈ 5 per family)
extreme progenitors were selected in a two-step selection scheme among 1000 plants. More specifically,
100 seeds per progenitor were evaluated in a four randomized-block design, i.e. 25 seeds per block in
a single row. In a first selection step, the 3 × 4 = 12 earliest (resp. latest) flowering plants among the
100 plants per progenitor were selected. Then in a second selection step, 10 (≈ 5 per family) individuals
were selected within each population based on both flowering time and kernel weight and the additional
condition of preserving two progenitors per family from the previous generation.
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1.4.1.4 Previously published results

Durand et al. (2010) showed that the response to selection was fast (they focused on the first seven
generations) and significant in both the Early-flowering (Early) and the Late-flowering (Late) populations.
The observed selection response could not be explained without accounting for mutational input, and
estimated values of mutational heritability ranged from 0.013 to 0.025, which corresponds to an upper
bound of what is reported in other species. Part of the response was nevertheless attributed to standing
genetic variation in the initial seed lot. They remarkably identified one polymorphism initially segregating
in the F252 seed lot at a candidate locus for flowering time, which explained 35% of the trait variation
within the Late F252 population, more precisely in FT027 (FL1 in Fig. 1.26). Durand et al. (2012),
characterized more thoroughly this candidate region and identifying the Eukaryotic Initiation Factor
(eIF-4A), and further revealed a high level of sequence and structural variation beyond the 3’-UTR of eIF-
4A, including several insertions of truncated transposable elements. They confirmed through association
genetics the association of the underlying polymorphism of this gene with flowering time variation and
revealed in the association panel the pervasive interactions between allelic variation and the genetic
background, pointing to underlying epistasis. They highlighted the importance of pleiotropic effects of
the candidate polymorphism on various traits including flowering time, plant height, and leaf number.
Finally Durand et al. (2015) refined the results of Durand et al. (2010) by including the first 16 generations
to their analysis (Fig. 1.26), and observed striking similarities between the two inbred lines: a plateau
is reached after 7 generations in Late families which they interpreted as resulting from physiological
limits. They used 42 markers derived from both Methyl-Sensitive Amplification and Amplified Fragment
Length Polymorphisms (AFLP) and showed that 13 of them were strongly associated with flowering
time variation. Their fast fixation throughout DSEs’ pedigrees resulted in strong genetic differentiation
between populations and families.

Figure 1.26: Observed response to selection in all families, extracted from (Durand et al., 2015).
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1.4.2 Objectives of the PhD
Previous results revealed a paradox between the sustainability of the response to selection and the

associated dearth of initial polymorphisms in small selfing population submitted to strong selection (1%
of selected individuals) and high drift (Ne ≈ 2.5). This paradox implies the necessity of incoming de novo
mutations to sustain the observed selection response. To disentangle the relative contribution of standing
genetic variation and de novo mutations in the selection response, I adopted 3 mains approaches.

In Chapter 2, I relied on forward individual-based simulations, calibrated from the observed selection
response to make predictions on the expected dynamics and the distribution of selected fitness effects of
de novo mutations.

In Chapter 3, I used a previously published RNAseq data set to detect polymorphic SNPs between
one (resp. one) early flowering and one late (resp. one late and one very late) flowering progenitor at
G13 in MBS (resp. F252). I notably developed a simulation approach with C. Dillmann to characterised
a simplistic expected null distribution of initial polymorphisms along the genome in our initial seed lots
(SSDs), accounting for selfing, drift and linkage disequilibrium. I then genotyped using a KasparT M

approach (KBioscience’s competitive allele-specific PCR amplification of target sequences and endpoint
fluorescence genotyping) a subset of 190 progenitors per inbred line for the detected SNPs. I adapted
for our SNP markers a unique parsimony and maximum likelihood inference algorithm based on pedigree
information originally developed by Durand et al. (2015) for AFLP markers. I inferred the genotypes of
all our selected progenitors, which allowed me to confidently characterise de novo mutations and standing
genetic variation. I further compared the observed allele frequency dynamics considering both standing
and de novo polymorphisms, to the simulated de novo mutations dynamics of Chapter 2.

Finally, in Chapter 4, I contributed to the phenotypic evaluation of a subset of 190 progenitors per
inbred line in a two years common garden experiment (in 2018 an 2019, on Saclay Plateau), subsequently
called SdpEval. While several traits were recorded, I decided to focus mainly on the continuous traits:
flowering time, plant height and length of the leaf just below the upper ear. I analysed the observed
selection response, and the correlative changes of the traits, with the aim of deciphering (i) the role of
de novo mutational variation in the selection response using Wray (1990) BLUPM model, (ii) the impact
of genotype-by-environment interactions. I also associated polymorphisms detected in Chapter 3 to the
observed phenotypic variation of the three traits.
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